Unconditionally optimal error estimate of mass- and energy-stable Galerkin method for Schrodinger equation with cubic nonlinearity

被引:4
作者
Yang, Huaijun [1 ]
机构
[1] Zhengzhou Univ Aeronaut, Sch Math, Zhengzhou 450046, Peoples R China
基金
中国国家自然科学基金;
关键词
Cubic Schr?dinger equation; Backward Euler scheme; A modified Crank-Nicolson scheme; Unconditionally optimal error estimate; FINITE-ELEMENT-METHOD; SUPERCONVERGENCE ANALYSIS; DIFFERENCE-SCHEMES; NUMERICAL-SOLUTION; CONVERGENCE; APPROXIMATIONS; FEMS;
D O I
10.1016/j.apnum.2022.08.016
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, unconditionally optimal error estimates in L-2-norm of two fully discrete schemes, one is backward Euler scheme and the other is a modified Crank-Nicolson scheme, are derived for cubic Schrodinger equation. Firstly, the mass and energy stability of the two schemes are proved rigorously. Secondly, the existence and uniqueness of the numerical solutions of the two schemes are presented. Based on the above priori estimations of the numerical solutions, unconditionally optimal error estimates in L-2-norm are obtained without any timestep restrictions. Finally, some numerical results are provided to confirm the theoretical analysis. (C) 2022 IMACS. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:39 / 55
页数:17
相关论文
共 50 条
[1]  
Adams R., 2003, Sobolev Spaces
[2]   ON FULLY DISCRETE GALERKIN METHODS OF 2ND-ORDER TEMPORAL ACCURACY FOR THE NONLINEAR SCHRODINGER-EQUATION [J].
AKRIVIS, GD ;
DOUGALIS, VA ;
KARAKASHIAN, OA .
NUMERISCHE MATHEMATIK, 1991, 59 (01) :31-53
[3]   FINITE-DIFFERENCE DISCRETIZATION OF THE CUBIC SCHRODINGER-EQUATION [J].
AKRIVIS, GD .
IMA JOURNAL OF NUMERICAL ANALYSIS, 1993, 13 (01) :115-124
[4]   Computational methods for the dynamics of the nonlinear Schrodinger/Gross-Pitaevskii equations [J].
Antoine, Xavier ;
Bao, Weizhu ;
Besse, Christophe .
COMPUTER PHYSICS COMMUNICATIONS, 2013, 184 (12) :2621-2633
[5]  
Antonopoulou DC, 2015, MATH COMPUT, V84, P1571
[6]   Analysis of a leap-frog pseudospectral scheme for the Schrodinger equation [J].
Borzi, A ;
Decker, E .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2006, 193 (01) :65-88
[7]   A Modified Numerical Scheme for the Cubic Schrodinger Equation [J].
Bratsos, A. G. .
NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2011, 27 (03) :608-620
[8]  
BRENNER SC, 2002, TEXTS APPL MATH, V15
[9]  
Brezis H., 1980, Nonlinear Analysis Theory, Methods & Applications, V4, P677, DOI 10.1016/0362-546X(80)90068-1
[10]   Difference schemes for solving the generalized nonlinear Schrodinger equation [J].
Chang, QS ;
Jia, EH ;
Sun, W .
JOURNAL OF COMPUTATIONAL PHYSICS, 1999, 148 (02) :397-415