The Application of Genetic Risk Scores in Rheumatic Diseases: A Perspective

被引:2
作者
Vaskimo, Lotta M. [1 ]
Gomon, Georgy [1 ]
Naamane, Najib [2 ]
Cordell, Heather J. [2 ]
Pratt, Arthur [3 ,4 ]
Knevel, Rachel [1 ,3 ]
机构
[1] Leiden Univ Med Ctr, Dept Rheumatol, NL-2333 ZA Leiden, Netherlands
[2] Newcastle Univ, Populat & Hlth Sci Inst, Newcastle Upon Tyne NE2 4AX, England
[3] Newcastle Univ, Translat & Clin Res Inst, Newcastle Upon Tyne NE2 4HH, England
[4] Newcastle Upon Tyne Hosp NHS Fdn Trust, Dept Rheumatol, Newcastle Upon Tyne NE7 7DN, England
关键词
genetic risk score (GRS); rheumatic diseases; genetics; clinical applicability; perspective; PREDICTION; ARTHRITIS; OSTEOARTHRITIS;
D O I
10.3390/genes14122167
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Modest effect sizes have limited the clinical applicability of genetic associations with rheumatic diseases. Genetic risk scores (GRSs) have emerged as a promising solution to translate genetics into useful tools. In this review, we provide an overview of the recent literature on GRSs in rheumatic diseases. We describe six categories for which GRSs are used: (a) disease (outcome) prediction, (b) genetic commonalities between diseases, (c) disease differentiation, (d) interplay between genetics and environmental factors, (e) heritability and transferability, and (f) detecting causal relationships between traits. In our review of the literature, we identified current lacunas and opportunities for future work. First, the shortage of non-European genetic data restricts the application of many GRSs to European populations. Next, many GRSs are tested in settings enriched for cases that limit the transferability to real life. If intended for clinical application, GRSs are ideally tested in the relevant setting. Finally, there is much to elucidate regarding the co-occurrence of clinical traits to identify shared causal paths and elucidate relationships between the diseases. GRSs are useful instruments for this. Overall, the ever-continuing research on GRSs gives a hopeful outlook into the future of GRSs and indicates significant progress in their potential applications.
引用
收藏
页数:16
相关论文
共 54 条
[1]   Genomic risk scores for juvenile idiopathic arthritis and its subtypes [J].
Canovas, Rodrigo ;
Cobb, Joanna ;
Brozynska, Marta ;
Bowes, John ;
Li, Yun R. ;
Smith, Samantha Louise ;
Hakonarson, Hakon ;
Thomson, Wendy ;
Ellis, Justine A. ;
Abraham, Gad ;
Munro, Jane E. ;
Inouye, Michael .
ANNALS OF THE RHEUMATIC DISEASES, 2020, 79 (12) :1572-1579
[2]   Polygenic risk score trend and new variants on chromosome 1 are associated with male gout in genome-wide association study [J].
Chang, Ya-Sian ;
Lin, Chien-Yu ;
Liu, Ting-Yuan ;
Huang, Chung-Ming ;
Chung, Chin-Chun ;
Chen, Yu-Chia ;
Tsai, Fuu-Jen ;
Chang, Jan-Gowth ;
Chang, Shun-Jen .
ARTHRITIS RESEARCH & THERAPY, 2022, 24 (01)
[3]   Genome-wide assessment of genetic risk for systemic lupus erythematosus and disease severity [J].
Chen, Lingyan ;
Wang, Yong-Fei ;
Liu, Lu ;
Bielowka, Adrianna ;
Ahmed, Rahell ;
Zhang, Huoru ;
Tombleson, Phil ;
Roberts, Amy L. ;
Odhams, Christopher A. ;
Graham, Deborah S. Cunninghame ;
Zhang, Xuejun ;
Yang, Wanling ;
Vyse, Timothy J. ;
Morris, David L. .
HUMAN MOLECULAR GENETICS, 2020, 29 (10) :1745-1756
[4]   Prediction of treatment response in rheumatoid arthritis patients using genome-wide SNP data [J].
Cherlin, Svetlana ;
Plant, Darren ;
Taylor, John C. ;
Colombo, Marco ;
Spiliopoulou, Athina ;
Tzanis, Evan ;
Morgan, Ann W. ;
Barnes, Michael R. ;
McKeigue, Paul ;
Barrett, Jennifer H. ;
Pitzalis, Costantino ;
Barton, Anne ;
Cordell, Heather J. .
GENETIC EPIDEMIOLOGY, 2018, 42 (08) :754-771
[5]   Tutorial: a guide to performing polygenic risk score analyses [J].
Choi, Shing Wan ;
Mak, Timothy Shin-Heng ;
O'Reilly, Paul F. .
NATURE PROTOCOLS, 2020, 15 (09) :2759-2772
[6]   Juvenile idiopathic arthritis polygenic risk scores are associated with cardiovascular phenotypes in early adulthood: a phenome-wide association study [J].
Clarke, Sarah L. N. ;
Jones, Hannah J. ;
Sharp, Gemma C. ;
Easey, Kayleigh E. ;
Hughes, Alun D. ;
Ramanan, Athimalaipet, V ;
Relton, Caroline L. .
PEDIATRIC RHEUMATOLOGY, 2022, 20 (01)
[7]   Polygenic prediction via Bayesian regression and continuous shrinkage priors [J].
Ge, Tian ;
Chen, Chia-Yen ;
Ni, Yang ;
Feng, Yen-Chen Anne ;
Smoller, Jordan W. .
NATURE COMMUNICATIONS, 2019, 10 (1)
[8]   Cardiometabolic Polygenic Risk Scores and Osteoarthritis Outcomes: A Mendelian Randomization Study Using Data From the Malmo Diet and Cancer Study and the UK Biobank [J].
Hindy, George ;
Akesson, Kristina E. ;
Melander, Olle ;
Aragam, Krishna G. ;
Haas, Mary E. ;
Nilsson, Peter M. ;
Kadam, Umesh T. ;
Orho-Melander, Marju .
ARTHRITIS & RHEUMATOLOGY, 2019, 71 (06) :925-934
[9]   Association of Polygenic Risk Scores With Radiographic Progression in Patients With Rheumatoid Arthritis [J].
Honda, Suguru ;
Ikari, Katsunori ;
Yano, Koichiro ;
Terao, Chikashi ;
Tanaka, Eiichi ;
Harigai, Masayoshi ;
Kochi, Yuta .
ARTHRITIS & RHEUMATOLOGY, 2022, 74 (05) :791-800
[10]   Multi-ancestry genome-wide association analyses identify novel genetic mechanisms in rheumatoid arthritis [J].
Ishigaki, Kazuyoshi ;
Sakaue, Saori ;
Terao, Chikashi ;
Luo, Yang ;
Sonehara, Kyuto ;
Yamaguchi, Kensuke ;
Amariuta, Tiffany ;
Too, Chun Lai ;
Laufer, Vincent A. ;
Scott, Ian C. ;
Viatte, Sebastien ;
Takahashi, Meiko ;
Ohmura, Koichiro ;
Murasawa, Akira ;
Hashimoto, Motomu ;
Ito, Hiromu ;
Hammoudeh, Mohammed ;
Al Emadi, Samar ;
Masri, Basel K. ;
Halabi, Hussein ;
Badsha, Humeira ;
Uthman, Imad W. ;
Wu, Xin ;
Lin, Li ;
Li, Ting ;
Plant, Darren ;
Barton, Anne ;
Orozco, Gisela ;
Verstappen, Suzanne M. M. ;
Bowes, John ;
MacGregor, Alexander J. ;
Honda, Suguru ;
Koido, Masaru ;
Tomizuka, Kohei ;
Kamatani, Yoichiro ;
Tanaka, Hiroaki ;
Tanaka, Eiichi ;
Suzuki, Akari ;
Maeda, Yuichi ;
Yamamoto, Kenichi ;
Miyawaki, Satoru ;
Xie, Gang ;
Zhang, Jinyi ;
Amos, Christopher, I ;
Keystone, Edward ;
Wolbink, Gertjan ;
Van der Horst-Bruinsma, Irene ;
Cui, Jing ;
Liao, Katherine P. ;
Carroll, Robert J. .
NATURE GENETICS, 2022, 54 (11) :1640-+