Fuzzy approximation-based optimal consensus control for nonlinear multiagent systems via adaptive dynamic programming

被引:63
作者
Zhao, Heng [1 ]
Wang, Huanqing [2 ]
Xu, Ning [3 ]
Zhao, Xudong [1 ]
Sharaf, Sanaa [4 ]
机构
[1] Bohai Univ, Coll Control Sci & Engn, Jinzhou 121013, Liaoning, Peoples R China
[2] Bohai Univ, Coll Math Sci, Jinzhou 121013, Liaoning, Peoples R China
[3] Bohai Univ, Coll Informat Sci & Technol, Jinzhou 121013, Liaoning, Peoples R China
[4] King Abdulaziz Univ, Fac Comp & Informat Technol, Dept Comp Sci, Jeddah 21589, Saudi Arabia
基金
中国国家自然科学基金;
关键词
Nonlinear multiagent system; Hierarchical sliding-mode control; Fuzzy approximation; H & INFIN; optimal consensus control; Adaptive dynamic programming; SLIDING MODE CONTROL; TRACKING CONTROL; CONTROL DESIGN;
D O I
10.1016/j.neucom.2023.126529
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper investigates the fuzzy approximation-based optimal consensus control problem for nonlinear multi agent systems with unknown perturbations. By constructing local error dynamics, the considered optimal consensus problem is reformulated as finding Nash-equilibrium solutions to zero-sum games. Then, by using sliding mode control technology and the concept of hierarchical design, a series of control signals are sequentially designed to regulate the consensus error and minimize the local value function. In addition, an identifier critic architecture is developed by using generalized fuzzy hyperbolic models, where the identifier is employed to relax the requirement for complete system dynamics information, and the hierarchical sliding mode surface based critic network is applied to approximate optimal control inputs. Finally, A simulation example is presented to illustrate the validity of the proposed approach.
引用
收藏
页数:14
相关论文
共 48 条
[1]   Decentralized Robust Synchronization of Unknown High Order Nonlinear Multi-Agent Systems With Prescribed Transient and Steady State Performance [J].
Bechlioulis, Charalampos P. ;
Rovithakis, George A. .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2017, 62 (01) :123-134
[2]   Active disturbance rejection-based event-triggered bipartite consensus control for nonaffine nonlinear multiagent systems [J].
Cao, Zhongwen ;
Niu, Ben ;
Zong, Guangdeng ;
Zhao, Xudong ;
Ahmad, Adil M. M. .
INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2023, 33 (12) :7181-7203
[3]   Adaptive neural self-triggered bipartite secure control for nonlinear MASs subject to DoS attacks [J].
Cheng, Fabin ;
Liang, Hongjing ;
Niu, Ben ;
Zhao, Ning ;
Zhao, Xudong .
INFORMATION SCIENCES, 2023, 631 :256-270
[4]   Decentralized adaptive neural two-bit-triggered control for nonstrict-feedback nonlinear systems with actuator failures [J].
Cheng, Fabin ;
Wang, Huanqing ;
Zhang, Liang ;
Ahmad, A. M. ;
Xu, Ning .
NEUROCOMPUTING, 2022, 500 :856-867
[5]   Event-triggered adaptive decentralised control of interconnected nonlinear systems with Bouc-Wen hysteresis input [J].
Cheng, Yan ;
Niu, Ben ;
Zhao, Xudong ;
Zong, Guangdeng ;
Ahmad, Adil M. .
INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 2023, 54 (06) :1275-1288
[6]   Adaptive tracking control of uncertain MIMO nonlinear systems based on generalized fuzzy hyperbolic model [J].
Cui, Yang ;
Zhang, Huaguang ;
Wang, Yingchun .
FUZZY SETS AND SYSTEMS, 2017, 306 :105-117
[7]  
Dianwei Qian, 2007, 2007 American Control Conference, P5254
[8]   Information flow and cooperative control of vehicle formations [J].
Fax, JA ;
Murray, RM .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2004, 49 (09) :1465-1476
[9]   Distributed adaptive leader-follower and leaderless consensus control of a class of strict-feedback nonlinear systems: a unified approach [J].
Huang, Jiangshuai ;
Wang, Wei ;
Wen, Changyun ;
Zhou, Jing ;
Li, Guoqi .
AUTOMATICA, 2020, 118
[10]   Adaptive-Critic Design for Decentralized Event-Triggered Control of Constrained Nonlinear Interconnected Systems Within an Identifier-Critic Framework [J].
Huo, Xin ;
Karimi, Hamid Reza ;
Zhao, Xudong ;
Wang, Bohui ;
Zong, Guangdeng .
IEEE TRANSACTIONS ON CYBERNETICS, 2022, 52 (08) :7478-7491