Calcium element quantification model using a portable X-ray fluorescence unit

被引:1
作者
Gonzalez-Rojas, Claudio H. [1 ]
Castro-Rodriguez, Cristian [1 ]
Gutierrez-Vivancoa, Sebastian [1 ]
Vargas-Verab, Esteban [2 ]
机构
[1] Univ Tarapaca, Fac Sci, Dept Chem, Velasquez Ave 1775,15 Region,Box 7-D, Arica, Chile
[2] Univ Tarapaca, High Res Inst, Archaeometr Anal & Res Lab LAIA, Box 7-D, Arica, Chile
关键词
Calcium; Portable; X-ray fluorescence; Quantitative; Determination; SOILS; XRF;
D O I
10.1016/j.mex.2023.102287
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
A methodology is proposed to achieve an effective quantification of the element Calcium in soil samples, using a portable X-ray Fluorescence (pXRF) equipment. The protocol began by preparing two ideal matrices using an increasing mass, measured on an analytical balance, of Calcium and Sodium Nitrate as binder. It is the Gravimetric technique. In both samples the fluorescent emission line of the element Calcium was calibrated using an standard reference material 1400 boneash. The validation of ideal samples of the element Calcium using the XRF technique with respect to AAS as an experimental standard, using linear correlation methods, to estimate from statistical inference the real concentration of the analyte, allowed us to appreciate that both approaches remain above the standard curve provided by AAS, with a value of 1.8 and 1.68, respectively. Which means that the tendency to evaluate Calcium samples by XRF are overestimated with respect to the curve provided by AAS. Since the last correlation coefficient is very close to 1.0 and its statistical inference equation is precisely known, the authors of this work propose to apply quantification protocol to real sediment samples.
引用
收藏
页数:17
相关论文
共 11 条
[1]  
Beckhoff B, 2007, Handbook of practical X-ray fluorescence analysis
[2]  
Dulama ID, 2016, ROM REP PHYS, V68, P1221
[3]  
Ene A., 2009, Ann. Dunarea de Jos Univ. Galati, Fasc., V32, P51
[4]   COMPARATIVE DETERMINATIONS OF LEAD IN SOILS BY X-RAY-FLUORESCENCE, ATOMIC-ABSORPTION SPECTROMETRY, AND ATOMIC EMISSION-SPECTROMETRY [J].
FREIBURG, C ;
MOLEPO, JM ;
SANSONI, B .
FRESENIUS ZEITSCHRIFT FUR ANALYTISCHE CHEMIE, 1987, 327 (3-4) :304-308
[5]  
Jenkins R, 1973, Practical X-ray Spectrometry, V2nd
[6]  
Jenkins R., 1995, QUANTITATIVE XRAY SP, DOI DOI 10.1201/9781482273380
[7]   ACID DIGESTION FOR SEDIMENTS, SLUDGES, SOILS, AND SOLID-WASTES - A PROPOSED ALTERNATIVE TO EPA SW 846 METHOD 3050 [J].
KIMBROUGH, DE ;
WAKAKUWA, JR .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 1989, 23 (07) :898-900
[8]  
Li Wenyu, 2021, Journal of Physics: Conference Series, DOI 10.1088/1742-6596/2009/1/012075
[9]   Normalizing XRF-scanner data: A cautionary note on the interpretation of high-resolution records from organic-rich lakes [J].
Lowemark, L. ;
Chen, H. -F. ;
Yang, T. -N. ;
Kylander, M. ;
Yu, E. -F. ;
Hsu, Y. -W. ;
Lee, T. -Q. ;
Song, S. -R. ;
Jarvis, S. .
JOURNAL OF ASIAN EARTH SCIENCES, 2011, 40 (06) :1250-1256
[10]   Comparison of soil pollution concentrations determined using AAS and portable XRF techniques [J].
Radu, Tanja ;
Diamond, Dermot .
JOURNAL OF HAZARDOUS MATERIALS, 2009, 171 (1-3) :1168-1171