Automatic characterization of drug/amino acid interactions by energy decomposition analysis

被引:0
作者
Ruano, Lorena [1 ]
Mandado, Marcos [2 ]
Nogueira, Juan J. [1 ,3 ]
机构
[1] Univ Autonoma Madrid, Dept Chem, Calle Francisco Tomas & Valiente 7, Madrid 28049, Spain
[2] Univ Vigo, Dept Phys Chem, S36310,Lagoas Marcosende S N, Vigo, Galicia, Spain
[3] Univ Autonoma Madrid, Inst Adv Res Chem IAdChem, Calle Francisco Tomas & Valiente 7, Madrid 28049, Spain
关键词
Drug; protein interactions; Energy decomposition analysis; Electron density; Structure; energy relationship; MOLECULAR-DYNAMICS SIMULATIONS; ION-TRANSPORT; FORCE-FIELDS; DNA; BINDING;
D O I
10.1007/s00214-023-02997-8
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The computational study of drug/protein interactions is fundamental to understand the mode of action of drugs and design new ones. In this study, we have developed a python code aimed at characterizing the nature of drug/amino acids interactions in an accurate and automatic way. Specifically, the code is interfaced with different software packages to compute the interaction energy quantum mechanically, and obtain its different contributions, namely, Pauli repulsion, electrostatic and polarisation terms, by an energy decomposition analysis based on one-electron and two-electron deformation densities. The code was tested by investigating the nature of the interaction between the glycine amino acid and 250 drugs. An energy-structure relationship analysis reveals that the strength of the electrostatic and polarisation contributions is related with the presence of small and large size heteroatoms, respectively, in the structure of the drug.
引用
收藏
页数:9
相关论文
共 52 条
[1]   A molecular dynamics simulation of DNA damage induction by ionizing radiation [J].
Abolfath, Ramin M. ;
Carlson, David J. ;
Chen, Zhe J. ;
Nath, Ravinder .
PHYSICS IN MEDICINE AND BIOLOGY, 2013, 58 (20) :7143-7157
[2]  
[Anonymous], RDKIT OPEN SOURCE CH
[3]   First Principles Neural Network Potentials for Reactive Simulations of Large Molecular and Condensed Systems [J].
Behler, Joerg .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2017, 56 (42) :12828-12840
[4]   Cosolvent and Dynamic Effects in Binding Pocket Search by Docking Simulations [J].
Bernat Szabo, P. ;
Zariquiey, Francesc Sabanes ;
Nogueira, Juan J. .
JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2021, 61 (11) :5508-5523
[5]   Nucleosomal embedding reshapes the dynamics of abasic sites [J].
Bignon, Emmanuelle ;
Claerbout, Victor E. P. ;
Jiang, Tao ;
Morell, Christophe ;
Gillet, Natacha ;
Dumont, Elise .
SCIENTIFIC REPORTS, 2020, 10 (01)
[6]   Machine Learning Force Fields: Construction, Validation, and Outlook [J].
Botu, V. ;
Batra, R. ;
Chapman, J. ;
Ramprasad, R. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2017, 121 (01) :511-522
[7]   The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors (Reprinted from Molecular Physics, vol 19, pg 553-566, 1970) [J].
Boys, SF ;
Bernardi, F .
MOLECULAR PHYSICS, 2002, 100 (01) :65-73
[8]  
Cardenas G., 2022, MOBIOTOOLS
[9]   MoBioTools: A toolkit to setup quantum mechanics/molecular mechanics calculations [J].
Cardenas, Gustavo ;
Lucia-Tamudo, Jesus ;
Mateo-delaFuente, Henar ;
Palmisano, Vito F. ;
Anguita-Ortiz, Nuria ;
Ruano, Lorena ;
Perez-Barcia, Alvaro ;
Diaz-Tendero, Sergio ;
Mandado, Marcos ;
Nogueira, Juan J. .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 2023, 44 (04) :516-533
[10]   Towards exact molecular dynamics simulations with machine-learned force fields [J].
Chmiela, Stefan ;
Sauceda, Huziel E. ;
Mueller, Klaus-Robert ;
Tkatchenko, Alexandre .
NATURE COMMUNICATIONS, 2018, 9