Minimum in the pressure dependence of the interfacial free energy between ice Ih and water

被引:12
作者
de Hijes, P. Montero [1 ]
Espinosa, J. R. [2 ]
Vega, C. [2 ]
Dellago, C. [1 ]
机构
[1] Univ Vienna, Fac Phys, A-1090 Vienna, Austria
[2] Univ Complutense Madrid, Fac Ciencias Quim, Dept Quim Fis, Madrid 28040, Spain
基金
英国工程与自然科学研究理事会; 奥地利科学基金会;
关键词
HOMOGENEOUS NUCLEATION; ANOMALOUS BEHAVIOR; NEGATIVE-PRESSURE; MOLECULAR-MODEL; TIP4P/ICE; DYNAMICS; CAVITATION; EQUATION;
D O I
10.1063/5.0140814
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Despite the importance of ice nucleation, this process has been barely explored at negative pressures. Here, we study homogeneous ice nucleation in stretched water by means of molecular dynamics seeding simulations using the TIP4P/Ice model. We observe that the critical nucleus size, interfacial free energy, free energy barrier, and nucleation rate barely change between isobars from -2600 to 500 bars when they are represented as a function of supercooling. This allows us to identify universal empirical expressions for homogeneous ice nucleation in the pressure range from -2600 to 500 bars. We show that this universal behavior arises from the pressure dependence of the interfacial free energy, which we compute by means of the mold integration technique, finding a shallow minimum around -2000 bars. Likewise, we show that the change in the interfacial free energy with pressure is proportional to the excess entropy and the slope of the melting line, exhibiting in the latter a reentrant behavior also at the same negative pressure. Finally, we estimate the excess internal energy and the excess entropy of the ice Ih-water interface.
引用
收藏
页数:10
相关论文
共 73 条
[1]   A potential model for the study of ices and amorphous water:: TIP4P/Ice -: art. no. 234511 [J].
Abascal, JLF ;
Sanz, E ;
Fernández, RG ;
Vega, C .
JOURNAL OF CHEMICAL PHYSICS, 2005, 122 (23)
[2]   Triple points and coexistence properties of the dense phases of water calculated using computer simulation [J].
Abascal, Jose L. F. ;
Sanz, Eduardo ;
Vega, Carlos .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2009, 11 (03) :556-562
[3]   Ice nucleation rates near ∼225 K [J].
Amaya, Andrew J. ;
Wyslouzil, Barbara E. .
JOURNAL OF CHEMICAL PHYSICS, 2018, 148 (08)
[4]   Test of classical nucleation theory via molecular-dynamics simulation [J].
Bai, XM ;
Li, M .
JOURNAL OF CHEMICAL PHYSICS, 2005, 122 (22)
[5]   Spontaneous Crystallization of a Supercooled Lennard-Jones Liquid: Molecular Dynamics Simulation [J].
Baidakov, Vladimir G. ;
Protsenko, Kseniia R. .
JOURNAL OF PHYSICAL CHEMISTRY B, 2019, 123 (38) :8103-8112
[6]   Anomalous Behavior in the Nucleation of Ice at Negative Pressures [J].
Bianco, Valentino ;
de Hijes, P. Montero ;
Lamas, Cintia P. ;
Sanz, Eduardo ;
Vega, Carlos .
PHYSICAL REVIEW LETTERS, 2021, 126 (01)
[7]   LIMITING NEGATIVE PRESSURE OF WATER [J].
BRIGGS, LJ .
JOURNAL OF APPLIED PHYSICS, 1950, 21 (07) :721-722
[8]   Cavitation in water: a review [J].
Caupin, Frederic ;
Herbert, Eric .
COMPTES RENDUS PHYSIQUE, 2006, 7 (9-10) :1000-1017
[9]   Exploring water and other liquids at negative pressure [J].
Caupin, Frederic ;
Arvengas, Arnaud ;
Davitt, Kristina ;
Azouzi, Mouna El Mekki ;
Shmulovich, Kirill I. ;
Ramboz, Claire ;
Sessoms, David A. ;
Stroock, Abraham D. .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2012, 24 (28)
[10]   Theoretical prediction of the homogeneous ice nucleation rate: disentangling thermodynamics and kinetics [J].
Cheng, Bingqing ;
Dellago, Christoph ;
Ceriotti, Michele .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2018, 20 (45) :28732-28740