Unravelling Charge Storage Mechanisms of Lithium, Sodium and Potassium into Graphene-Coffee Waste Derived Hard Carbon Composites

被引:6
作者
Luis Gomez-Urbano, Juan [1 ,2 ,3 ]
Leibing, Christian [3 ]
Jauregui, Maria [1 ]
Darlami-Magar, Sandesh [3 ]
Saurel, Damien [1 ]
Carriazo, Daniel [1 ,4 ]
Balducci, Andrea [3 ]
机构
[1] CIC EnergiGUNE, Parque Tecnol Alava, Minano 01510, Alava, Spain
[2] Univ Basque Country, UPV EHU, Bilbao 48080, Spain
[3] Inst Tech Chem & Environm Chem, D-07743 Jena, Germany
[4] Ikerbasque, Basque Fdn Sci, Bilbao 48013, Spain
关键词
biowaste; graphene; lithium; operando XRD; potassium; sodium; ION BATTERIES; ANODE MATERIALS; NA; PERFORMANCE; ELECTRODES; GROUNDS; INSERTION; INSIGHTS; SHELLS; OXIDE;
D O I
10.1002/batt.202200508
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Hard carbons are promising anode materials for lithium, sodium and potassium-ion batteries attending to their low cost, simple processing technology and outstanding electrochemical performance. However, their complex structure and controversial carrier-ion storage mechanisms makes difficult the prediction of their performance. Herein, we investigate the insertion storage mechanisms behind of three different alkali metal ions (lithium, sodium and potassium) into a hard carbon composite obtained by the pyrolysis of coffee waste and graphene oxide. The insertion/deinsertion processes have been monitored by galvanostatic intermittent titration technique and operando X-Ray diffraction. Results reveal that alkaline metal ions follow an adsorption-intercalation mechanism where the high potential region can be ascribed to the adsorption of the alkaline metal ions on the surface active sites, while slopping region arises from their intercalation between the pseudo-graphitic micro-crystallites. Moreover, the graphene-coffee waste hard carbon exhibits a notorious capacity retention after 300 charge/discharge cycles in all the alkaline metals evaluated.
引用
收藏
页数:8
相关论文
共 66 条
[1]   Polyanionic Insertion Materials for Sodium-Ion Batteries [J].
Barpanda, Prabeer ;
Lander, Laura ;
Nishimura, Shin-ichi ;
Yamada, Atsuo .
ADVANCED ENERGY MATERIALS, 2018, 8 (17)
[2]   New Mechanistic Insights on Na-Ion Storage in Nongraphitizable Carbon [J].
Bommier, Clement ;
Surta, Todd Wesley ;
Dolgos, Michelle ;
Ji, Xiulei .
NANO LETTERS, 2015, 15 (09) :5888-5892
[3]   Insights into pseudographite-structured hard carbon with stabilized performance for high energy K-ion storage [J].
Chen, Cheng ;
Wu, Mengqiang ;
Wang, Yuesheng ;
Zaghib, Karim .
JOURNAL OF POWER SOURCES, 2019, 444
[4]   Coffee-Ground-Derived Nanoporous Carbon Anodes for Sodium-Ion Batteries with High Rate Performance and Cyclic Stability [J].
Chiang, Peng-Hsuan ;
Liu, Shih-Fu ;
Hung, Yu-Hsuan ;
Tseng, Hsin ;
Guo, Chun-Han ;
Chen, Han-Yi .
ENERGY & FUELS, 2020, 34 (06) :7666-7675
[5]   N/O Dual-Doped Environment-Friendly Hard Carbon as Advanced Anode for Potassium-Ion Batteries [J].
Cui, Rong Chao ;
Xu, Bo ;
Dong, Hou Ji ;
Yang, Chun Cheng ;
Jiang, Qing .
ADVANCED SCIENCE, 2020, 7 (05)
[6]   Synthesis of hard carbon from argan shells for Na-ion batteries [J].
Dahbi, Mouad ;
Kiso, Manami ;
Kubota, Kei ;
Horiba, Tatsuo ;
Chafik, Tarik ;
Hida, Kazuo ;
Matsuyama, Takashi ;
Komaba, Shinichi .
JOURNAL OF MATERIALS CHEMISTRY A, 2017, 5 (20) :9917-9928
[7]   Sustainable Anodes for Lithium- and Sodium-Ion Batteries Based on Coffee Ground-Derived Hard Carbon and Green Binders [J].
Darjazi, Hamideh ;
Staffolani, Antunes ;
Sbrascini, Leonardo ;
Bottoni, Luca ;
Tossici, Roberto ;
Nobili, Francesco .
ENERGIES, 2020, 13 (23)
[8]  
Darlami-Magar S., 2022, ENERGY TECHNOL-GER, V10
[9]   Hard carbons for sodium-ion batteries: Structure, analysis, sustainability, and electrochemistry [J].
Dou, Xinwei ;
Hasa, Ivana ;
Saurel, Damien ;
Vaalma, Christoph ;
Wu, Liming ;
Buchholz, Daniel ;
Bresser, Dominic ;
Komaba, Shinichi ;
Passerini, Stefano .
MATERIALS TODAY, 2019, 23 :87-104
[10]  
Fleischer M., 1954, J CHEM EDUC, V31, P446, DOI [10.1021/ed031p446, DOI 10.1021/ED031P446]