Commutator estimates for the Dirichlet-to-Neumann map associated to parabolic equations with complex-valued and measurable coefficients on Rn+2+

被引:0
作者
Zhang, Guoming [1 ]
机构
[1] Shandong Univ, Res Ctr Math & Interdisciplinary Sci, Minist Educt, Frontiers Sci Ctr Nonlinear Expectat, Qingdao 266237, Peoples R China
关键词
Layer potentials; Dirichlet-to-Neumann map; Dahlberg?s bilinear estimate; Parabolic boundary value problems; BOUNDARY-VALUE-PROBLEMS; LAYER POTENTIALS; SOLVABILITY; SPACES;
D O I
10.1016/j.jde.2022.11.047
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the paper we established the L2 estimates for commutators of the Dirichlet-to-Neumann map generated by a divergence form parabolic operator, defined on IIIn+2 + , with real, symmetric and t, lambda-independent coefficient matrix, or more generally, a small complex L infinity perturbation of such. The major new challenge, compared to our previous work in elliptic setting, is to handle the first order derivatives with respect to the time variable t which not only fall on solutions to parabolic equations but also on auxiliary functions.(c) 2022 Elsevier Inc. All rights reserved.
引用
收藏
页码:66 / 125
页数:60
相关论文
共 22 条
  • [1] Holomorphic functional calculi and sums of commuting operators
    Albrecht, D
    Franks, E
    McIntosh, A
    [J]. BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 1998, 58 (02) : 291 - 305
  • [2] Analyticity of layer potentials and L2 solvability of boundary value problems for divergence form elliptic equations with complex L∞ coefficients
    Alfonseca, M. Angeles
    Auscher, Pascal
    Axelsson, Andreas
    Hofmann, Steve
    Kim, Seick
    [J]. ADVANCES IN MATHEMATICS, 2011, 226 (05) : 4533 - 4606
  • [3] Regularity theorems and heat kernel for elliptic operators
    Auscher, P
    [J]. JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1996, 54 : 284 - 296
  • [4] Auscher P, 1998, ASTERISQUE, pIII
  • [5] L2 well-posedness of boundary value problems for parabolic systems with measurable coefficients
    Auscher, Pascal
    Egert, Moritz
    Nystrom, Kaj
    [J]. JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2020, 22 (09) : 2943 - 3058
  • [6] On regularity of weak solutions to linear parabolic systems with measurable coefficients
    Auscher, Pascal
    Bortz, Simon
    Egert, Moritz
    Saari, Olli
    [J]. JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2019, 121 : 216 - 243
  • [7] Boundedness of single layer potentials associated to divergence form parabolic equations with complex coefficients
    Castro, Alejandro J.
    Nystrom, Kaj
    Sande, Olow
    [J]. CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2016, 55 (05)
  • [8] On the Green's matrices of strongly parabolic systems of second order
    Cho, Sungwon
    Dong, Hongjie
    Kim, Suck
    [J]. INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2008, 57 (04) : 1633 - 1677
  • [9] Coifman R. R., 1971, LECT NOTES MATH, V242
  • [10] FEFFERMAN C, 1972, ACTA MATH-UPPSALA, V129, P137, DOI 10.1007/BF02392215