TWAS Atlas: a curated knowledgebase of transcriptome-wide association studies

被引:25
|
作者
Lu, Mingming [1 ,2 ,3 ,4 ]
Zhang, Yadong [1 ,2 ,3 ]
Yang, Fengchun [5 ]
Mai, Jialin [1 ,2 ,3 ,4 ]
Gao, Qianwen [1 ,2 ,3 ,4 ,9 ]
Xu, Xiaowei [5 ]
Kang, Hongyu [5 ]
Hou, Li [5 ]
Shang, Yunfei [1 ,2 ,3 ,4 ]
Qain, Qiheng [1 ,2 ,3 ,4 ]
Liu, Jie [6 ]
Jiang, Meiye [1 ,2 ,3 ,4 ]
Zhang, Hao [1 ,2 ,3 ,4 ]
Bu, Congfan [1 ,2 ,3 ]
Wang, Jinyue [7 ]
Zhang, Zhewen [1 ,2 ,3 ]
Zhang, Zaichao [8 ]
Zeng, Jingyao [1 ,2 ,3 ]
Li, Jiao [5 ]
Xiao, Jingfa [1 ,2 ,3 ,4 ]
机构
[1] Chinese Acad Sci, Natl Genom Data Ctr, Beijing Inst Genom, Beijing 100101, Peoples R China
[2] China Natl Ctr Bioinformat, Beijing 100101, Peoples R China
[3] Chinese Acad Sci, CAS Key Lab Genome Sci & Informat, Beijing Inst Genom, Beijing 100101, Peoples R China
[4] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[5] Chinese Acad Med Sci, Inst Med Informat, Peking Union Med Coll, Beijing 100020, Peoples R China
[6] North China Univ Sci & Technol, Affiliated Hosp, Tangshan 063000, Peoples R China
[7] Chinese Acad Sci, Inst Biophys, Beijing 100101, Peoples R China
[8] Univ Western Ontario, Dept Biol, London, ON N6A 5B7, Canada
[9] Beijing Novogene Bioinformat Technol Co Ltd, Beijing 100000, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
GENE; EXPRESSION; LOCI; GWAS; IDENTIFICATION; DATABASE; EQTL;
D O I
10.1093/nar/gkac821
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Transcriptome-wide association studies (TWASs), as a practical and prevalent approach for detecting the associations between genetically regulated genes and traits, are now leading to a better understanding of the complex mechanisms of genetic variants in regulating various diseases and traits. Despite the ever-increasing TWAS outputs, there is still a lack of databases curating massive public TWAS information and knowledge. To fill this gap, here we present TWAS Atlas (https://ngdc.cncb.ac.cn/twas/), an integrated knowledgebase of TWAS findings manually curated from extensive literature. In the current implementation, TWAS Atlas collects 401,266 high-quality human gene-trait associations from 200 publications, covering 22,247 genes and 257 traits across 135 tissue types. In particular, an interactive knowledge graph of the collected gene-trait associations is constructed together with single nucleotide polymorphism (SNP)-gene associations to build up comprehensive regulatory networks at multi-omics levels. In addition, TWAS Atlas, as a user-friendly web interface, efficiently enables users to browse, search and download all association information, relevant research metadata and annotation information of interest. Taken together, TWAS Atlas is of great value for promoting the utility and availability of TWAS results in explaining the complex genetic basis as well as providing new insights for human health and disease research.
引用
收藏
页码:D1179 / D1187
页数:9
相关论文
共 50 条
  • [31] Integrative approaches for large-scale transcriptome-wide association studies
    Alexander Gusev
    Arthur Ko
    Huwenbo Shi
    Gaurav Bhatia
    Wonil Chung
    Brenda W J H Penninx
    Rick Jansen
    Eco J C de Geus
    Dorret I Boomsma
    Fred A Wright
    Patrick F Sullivan
    Elina Nikkola
    Marcus Alvarez
    Mete Civelek
    Aldons J Lusis
    Terho Lehtimäki
    Emma Raitoharju
    Mika Kähönen
    Ilkka Seppälä
    Olli T Raitakari
    Johanna Kuusisto
    Markku Laakso
    Alkes L Price
    Päivi Pajukanta
    Bogdan Pasaniuc
    Nature Genetics, 2016, 48 : 245 - 252
  • [32] Integrative approaches for large-scale transcriptome-wide association studies
    Gusev, Alexander
    Ko, Arthur
    Shi, Huwenbo
    Bhatia, Gaurav
    Chung, Wonil
    Penninx, Brenda W. J. H.
    Jansen, Rick
    de Geus, Eco J. C.
    Boomsma, Dorret I.
    Wright, Fred A.
    Sullivan, Patrick F.
    Nikkola, Elina
    Alvarez, Marcus
    Civelek, Mete
    Lusis, Aldons J.
    Lehtimaki, Terho
    Raitoharju, Emma
    Kahonen, Mika
    Seppala, Ilkka
    Raitakari, Olli T.
    Kuusisto, Johanna
    Laakso, Markku
    Price, Alkes L.
    Pajukanta, Paivi
    Pasaniuc, Bogdan
    NATURE GENETICS, 2016, 48 (03) : 245 - 252
  • [33] A powerful fine-mapping method for transcriptome-wide association studies
    Wu, Chong
    Pan, Wei
    HUMAN GENETICS, 2020, 139 (02) : 199 - 213
  • [34] Transcriptome-wide association studies accounting for colocalization using Egger regression
    Barfield, Richard
    Feng, Helian
    Gusev, Alexander
    Wu, Lang
    Zheng, Wei
    Pasaniuc, Bogdan
    Kraft, Peter
    GENETIC EPIDEMIOLOGY, 2018, 42 (05) : 418 - 433
  • [35] MOSTWAS: Multi-Omic Strategies for Transcriptome-Wide Association Studies
    Bhattacharya, Arjun
    Li, Yun
    Love, Michael, I
    PLOS GENETICS, 2021, 17 (03):
  • [36] Large-scale transcriptome-wide association study (TWAS) identifies novel candidate susceptibility genes for pancreatic cancer
    Zhong, Jun
    Jermusyk, Ashley
    Wu, Lang
    Hoskins, Jason W.
    Collins, Irene
    Zhang, Mingfeng
    Lei, Song
    Chung, Charles C.
    Zhang, Tongwu
    Xiao, Wenming
    Stolzenberg-Solomon, Rachael
    Klein, Alison P.
    Wolpin, Brian M.
    Shu, Xiao-Ou
    Chanock, Stephen J.
    Olson, Sara
    Chatterjee, Nilanjan
    Smith, Jill
    Shi, Jianxin
    Kraft, Peter
    Petersen, Gloria M.
    Zheng, Wei
    Amundadottir, Laufey T.
    CANCER RESEARCH, 2019, 79 (13)
  • [37] twas_sim, a Python']Python-based tool for simulation and power analysis of transcriptome-wide association analysis
    Wang, Xinran
    Lu, Zeyun
    Bhattacharya, Arjun
    Pasaniuc, Bogdan
    Mancuso, Nicholas
    BIOINFORMATICS, 2023, 39 (05)
  • [38] Full title: A large-scale transcriptome-wide association study (TWAS) of 10 blood cell phenotypes reveals complexities of TWAS fine-mapping
    Tapia, Amanda L.
    Rowland, Bryce T.
    Rosen, Jonathan D.
    Preuss, Michael
    Young, Kris
    Graff, Misa
    Choquet, Helene
    Couper, David J.
    Buyske, Steve
    Bien, Stephanie A.
    Jorgenson, Eric
    Kooperberg, Charles
    Loos, Ruth J. F.
    Morrison, Alanna C.
    North, Kari E.
    Yu, Bing
    Reiner, Alexander P.
    Li, Yun
    Raffield, Laura M.
    GENETIC EPIDEMIOLOGY, 2022, 46 (01) : 3 - 16
  • [39] A TRANSCRIPTOME-WIDE ASSOCIATION STUDY OF MISMATCH NEGATIVITY
    Bhat, Anjali
    Irizar, Aritz
    Pain, Oliver
    Thygesen, Johan
    Harju-Seppanen, Jasmine
    Austin-Zimmerman, Isabelle
    Wang, Baihan
    Zartaloudi, Eirini
    Calafato, Stella
    Friston, Karl
    Adams, Rick
    Kuchenbaecker, Karoline
    Hall, Mei-Hua
    Bramon, Elvira
    Hong, Elliot
    EUROPEAN NEUROPSYCHOPHARMACOLOGY, 2019, 29 : S188 - S188
  • [40] SR-TWAS: leveraging multiple reference panels to improve transcriptome-wide association study power by ensemble machine learning
    Parrish, Randy L.
    Buchman, Aron S.
    Tasaki, Shinya
    Wang, Yanling
    Avey, Denis
    Xu, Jishu
    De Jager, Philip L.
    Bennett, David A.
    Epstein, Michael P.
    Yang, Jingjing
    NATURE COMMUNICATIONS, 2024, 15 (01)