TWAS Atlas: a curated knowledgebase of transcriptome-wide association studies

被引:25
|
作者
Lu, Mingming [1 ,2 ,3 ,4 ]
Zhang, Yadong [1 ,2 ,3 ]
Yang, Fengchun [5 ]
Mai, Jialin [1 ,2 ,3 ,4 ]
Gao, Qianwen [1 ,2 ,3 ,4 ,9 ]
Xu, Xiaowei [5 ]
Kang, Hongyu [5 ]
Hou, Li [5 ]
Shang, Yunfei [1 ,2 ,3 ,4 ]
Qain, Qiheng [1 ,2 ,3 ,4 ]
Liu, Jie [6 ]
Jiang, Meiye [1 ,2 ,3 ,4 ]
Zhang, Hao [1 ,2 ,3 ,4 ]
Bu, Congfan [1 ,2 ,3 ]
Wang, Jinyue [7 ]
Zhang, Zhewen [1 ,2 ,3 ]
Zhang, Zaichao [8 ]
Zeng, Jingyao [1 ,2 ,3 ]
Li, Jiao [5 ]
Xiao, Jingfa [1 ,2 ,3 ,4 ]
机构
[1] Chinese Acad Sci, Natl Genom Data Ctr, Beijing Inst Genom, Beijing 100101, Peoples R China
[2] China Natl Ctr Bioinformat, Beijing 100101, Peoples R China
[3] Chinese Acad Sci, CAS Key Lab Genome Sci & Informat, Beijing Inst Genom, Beijing 100101, Peoples R China
[4] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[5] Chinese Acad Med Sci, Inst Med Informat, Peking Union Med Coll, Beijing 100020, Peoples R China
[6] North China Univ Sci & Technol, Affiliated Hosp, Tangshan 063000, Peoples R China
[7] Chinese Acad Sci, Inst Biophys, Beijing 100101, Peoples R China
[8] Univ Western Ontario, Dept Biol, London, ON N6A 5B7, Canada
[9] Beijing Novogene Bioinformat Technol Co Ltd, Beijing 100000, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
GENE; EXPRESSION; LOCI; GWAS; IDENTIFICATION; DATABASE; EQTL;
D O I
10.1093/nar/gkac821
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Transcriptome-wide association studies (TWASs), as a practical and prevalent approach for detecting the associations between genetically regulated genes and traits, are now leading to a better understanding of the complex mechanisms of genetic variants in regulating various diseases and traits. Despite the ever-increasing TWAS outputs, there is still a lack of databases curating massive public TWAS information and knowledge. To fill this gap, here we present TWAS Atlas (https://ngdc.cncb.ac.cn/twas/), an integrated knowledgebase of TWAS findings manually curated from extensive literature. In the current implementation, TWAS Atlas collects 401,266 high-quality human gene-trait associations from 200 publications, covering 22,247 genes and 257 traits across 135 tissue types. In particular, an interactive knowledge graph of the collected gene-trait associations is constructed together with single nucleotide polymorphism (SNP)-gene associations to build up comprehensive regulatory networks at multi-omics levels. In addition, TWAS Atlas, as a user-friendly web interface, efficiently enables users to browse, search and download all association information, relevant research metadata and annotation information of interest. Taken together, TWAS Atlas is of great value for promoting the utility and availability of TWAS results in explaining the complex genetic basis as well as providing new insights for human health and disease research.
引用
收藏
页码:D1179 / D1187
页数:9
相关论文
共 50 条
  • [21] Probabilistic fine-mapping of transcriptome-wide association studies
    Nicholas Mancuso
    Malika K. Freund
    Ruth Johnson
    Huwenbo Shi
    Gleb Kichaev
    Alexander Gusev
    Bogdan Pasaniuc
    Nature Genetics, 2019, 51 : 675 - 682
  • [22] Transcriptome-wide association studies: a view from Mendelian randomization
    Huanhuan Zhu
    Xiang Zhou
    Quantitative Biology, 2021, 9 (02) : 107 - 121
  • [23] Transcriptome-wide association studies: a view from Mendelian randomization
    Zhu, Huanhuan
    Zhou, Xiang
    QUANTITATIVE BIOLOGY, 2021, 9 (02) : 107 - 121
  • [24] Probabilistic fine-mapping of transcriptome-wide association studies
    Mancuso, Nicholas
    Freund, Malika K.
    Johnson, Ruth
    Shi, Huwenbo
    Kichaev, Gleb
    Gusev, Alexander
    Pasaniuc, Bogdan
    NATURE GENETICS, 2019, 51 (04) : 675 - +
  • [25] Improving Gene Expression Prediction Accuracy in Transcriptome-Wide Association Studies
    Fryett, James J.
    Morris, Andrew P.
    Cordell, Heather J.
    HUMAN HEREDITY, 2017, 83 (01) : 8 - 8
  • [26] Harmony in transcripts: a systematic literature review of transcriptome-wide association studies
    Mashhour, Mahinaz A.
    Kandil, Ahmed Hisham
    AbdElwahed, Manal
    Mabrouk, Mai S.
    Journal of Engineering and Applied Science, 2024, 71 (01):
  • [27] Disentangling genetic feature selection and aggregation in transcriptome-wide association studies
    Cao, Chen
    Kossinna, Pathum
    Kwok, Devin
    Li, Qing
    He, Jingni
    Su, Liya
    Guo, Xingyi
    Zhang, Qingrun
    Long, Quan
    GENETICS, 2022, 220 (02)
  • [28] Disentangling Genetic Feature Selection and Aggregation in Transcriptome-Wide Association Studies
    Cao, Chen
    Kwok, Devin
    Li, Qing
    He, Jingni
    Guo, Xingyi
    Zhang, Qingrun
    Long, Quan
    GENETIC EPIDEMIOLOGY, 2021, 45 (07) : 771 - 772
  • [29] A powerful fine-mapping method for transcriptome-wide association studies
    Chong Wu
    Wei Pan
    Human Genetics, 2020, 139 : 199 - 213
  • [30] Multi-omic strategies for transcriptome-wide prediction and association studies
    Bhattacharya, Arjun
    Santos, Hudson J.
    Love, Michael I.
    GENETIC EPIDEMIOLOGY, 2020, 44 (05) : 470 - 471