Lithium-ion hopping weakens thermal stability of LiPF6 carbonate electrolytes

被引:8
作者
Han, Kee Sung [1 ,2 ]
Lee, Mal -Soon [1 ]
Kim, Namhyung [3 ,4 ]
Choi, Daiwon [3 ]
Chae, Sujong [3 ,5 ]
Ryu, Jaegeon [3 ,6 ]
Piccini, Giovannimaria [1 ]
Rousseau, Roger [1 ,7 ]
Thomsen, Edwin C. [3 ]
机构
[1] Pacific Northwest Natl Lab, Phys & Computat Sci Directorate, Richland, WA 99352 USA
[2] Pacific Northwest Natl Lab, Joint Ctr Energy Storage Res, Richland, WA 99352 USA
[3] Pacific Northwest Natl Lab, Energy & Environm Directorate, Richland, WA 99352 USA
[4] Pukyong Natl Univ, Dept Mat Syst Engn, 45 Yongso Ro, Busan 48513, South Korea
[5] Pukyong Natl Univ, Dept Ind Chem, 45 Yongso Ro, Busan 48513, South Korea
[6] Sogang Univ, Dept Chem & Biomol Engn, 35 Baekbeom Ro, Seoul 04107, South Korea
[7] Oak Ridge Natl Lab, Chem Sci Div, Oak Ridge, TN 37830 USA
来源
CELL REPORTS PHYSICAL SCIENCE | 2024年 / 5卷 / 01期
关键词
BATTERIES; UREA;
D O I
10.1016/j.xcrp.2023.101768
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Lithium hexafluorophosphate (LiPF6)-based carbonate electrolytes are widely used in commercial lithium -ion batteries (LIBs), but their thermal instability limits the cycle life and safety of LIBs at elevated temperatures. Few studies have yielded insight into the initial PF6- decomposition reaction that promotes thermal instability of LiPF6- based electrolytes. Here, we find that lithium -ion hopping assisted by the overall reorientational motion of propylene carbonate molecules facilitates PF6- decomposition at elevated temperatures in 1 M LiPF6/propylene carbonate electrolyte. Further, we demonstrate that urea additives, by preventing lithium -ion hopping, suppress the initial LiPF6 decomposition reaction and enhance the thermal stability of the electrolyte. LIB cell tests with LiNi0.6Mn0.2Co0.2O2||Li4Ti5O12 show improved LIB performance at elevated temperatures with the thermally stabilized electrolyte. This study provides key insights into the design of thermally stable LiPF6-based carbonate electrolytes for improving the cycle life, calendar life, and safety of LIBs in elevated -temperature applications.
引用
收藏
页数:15
相关论文
共 51 条
[1]   Well-tempered metadynamics: A smoothly converging and tunable free-energy method [J].
Barducci, Alessandro ;
Bussi, Giovanni ;
Parrinello, Michele .
PHYSICAL REVIEW LETTERS, 2008, 100 (02)
[2]   Electrochemical in situ investigations of SEI and dendrite formation on the lithium metal anode [J].
Bieker, Georg ;
Winter, Martin ;
Bieker, Peter .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2015, 17 (14) :8670-8679
[3]   Temperature Dependence of Electrochemical Degradation in LiNi1/3Mn1/3Co1/3O2/Li4Ti5O12 Cells [J].
Bjorklund, Erik ;
Naylor, Andrew J. ;
Brant, William ;
Brandell, Daniel ;
Younesi, Reza ;
Edstrom, Kristina .
ENERGY TECHNOLOGY, 2019, 7 (09)
[4]   Promoting transparency and reproducibility in enhanced molecular simulations [J].
Bonomi, Massimiliano ;
Bussi, Giovanni ;
Camilloni, Carlo ;
Tribello, Gareth A. ;
Banas, Pavel ;
Barducci, Alessandro ;
Bernetti, Mattia ;
Bolhuis, Peter G. ;
Bottaro, Sandro ;
Branduardi, Davide ;
Capelli, Riccardo ;
Carloni, Paolo ;
Ceriotti, Michele ;
Cesari, Andrea ;
Chen, Haochuan ;
Chen, Wei ;
Colizzi, Francesco ;
De, Sandip ;
De La Pierre, Marco ;
Donadio, Davide ;
Drobot, Viktor ;
Ensing, Bernd ;
Ferguson, Andrew L. ;
Filizola, Marta ;
Fraser, James S. ;
Fu, Haohao ;
Gasparotto, Piero ;
Gervasio, Francesco Luigi ;
Giberti, Federico ;
Gil-Ley, Alejandro ;
Giorgino, Toni ;
Heller, Gabriella T. ;
Hocky, Glen M. ;
Iannuzzi, Marcella ;
Invernizzi, Michele ;
Jelfs, Kim E. ;
Jussupow, Alexander ;
Kirilin, Evgeny ;
Laio, Alessandro ;
Limongelli, Vittorio ;
Lindorff-Larsen, Kresten ;
Lohr, Thomas ;
Marinelli, Fabrizio ;
Martin-Samos, Layla ;
Masetti, Matteo ;
Meyer, Ralf ;
Michaelides, Angelos ;
Molteni, Carla ;
Morishita, Tetsuya ;
Nava, Marco .
NATURE METHODS, 2019, 16 (08) :670-673
[5]   Thermal decomposition of LiPF6-based electrolytes for lithium-ion batteries [J].
Campion, CL ;
Li, WT ;
Lucht, BL .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2005, 152 (12) :A2327-A2334
[6]   Dead lithium: mass transport effects on voltage, capacity, and failure of lithium metal anodes [J].
Chen, Kuan-Hung ;
Wood, Kevin N. ;
Kazyak, Eric ;
LePage, William S. ;
Davis, Andrew L. ;
Sanchez, Adrian J. ;
Dasgupta, Neil P. .
JOURNAL OF MATERIALS CHEMISTRY A, 2017, 5 (23) :11671-11681
[7]   Li-ion battery technology for grid application [J].
Choi, Daiwon ;
Shamim, Nimat ;
Crawford, Alasdair ;
Huang, Qian ;
Vartanian, Charlie K. ;
Viswanathan, Vilayanur V. ;
Paiss, Matthew D. ;
Alam, Md Jan E. ;
Reed, David M. ;
Sprenkle, Vince L. .
JOURNAL OF POWER SOURCES, 2021, 511
[8]   Building Safe Lithium-Ion Batteries for Electric Vehicles: A Review [J].
Duan, Jian ;
Tang, Xuan ;
Dai, Haifeng ;
Yang, Ying ;
Wu, Wangyan ;
Wei, Xuezhe ;
Huang, Yunhui .
ELECTROCHEMICAL ENERGY REVIEWS, 2020, 3 (01) :1-42
[9]   All-temperature batteries enabled by fluorinated electrolytes with non-polar solvents [J].
Fan, Xiulin ;
Ji, Xiao ;
Chen, Long ;
Chen, Ji ;
Deng, Tao ;
Han, Fudong ;
Yue, Jie ;
Piao, Nan ;
Wang, Ruixing ;
Zhou, Xiuquan ;
Xiao, Xuezhang ;
Chen, Lixin ;
Wang, Chunsheng .
NATURE ENERGY, 2019, 4 (10) :882-890
[10]   Separable dual-space Gaussian pseudopotentials [J].
Goedecker, S ;
Teter, M ;
Hutter, J .
PHYSICAL REVIEW B, 1996, 54 (03) :1703-1710