Energy-Efficient Heuristic Computation Offloading With Delay Constraints in Mobile Edge Computing

被引:5
|
作者
Mei, Jing [1 ]
Tong, Zhao [1 ]
Li, Kenli [1 ]
Zhang, Lianming [1 ]
Li, Keqin [2 ]
机构
[1] Hunan Normal Univ, Coll Informat Sci & Engn, Changsha 410081, Hunan, Peoples R China
[2] SUNY Coll New Paltz, Dept Comp Sci, New Paltz, NY 12561 USA
基金
中国国家自然科学基金;
关键词
Computation offloading; delay constraint; edge computing; energy optimization; resource competition; RESOURCE-ALLOCATION;
D O I
10.1109/TSC.2023.3324604
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
By offloading computation-intensive tasks to the edge cloud, mobile edge computing (MEC) has been regarded as an effective technology for enhancing computational capacity and extending the battery lifetime of mobile devices (MDs). However, due to the limitation of bandwidth and computing resources in MEC, unreasonable task offloading might lead to intensive resource competition, which recedes the performance gains benefit from offloading. When the tasks are latency-sensitive, a proper task offloading strategy is more important. Considering the heterogeneous delay constraints and resource competition comprehensively, we aim at minimizing the energy consumption of MDs subject to the individual delay constraints of tasks by jointly optimizing the task offloading and resource allocation in terms of wireless channel and remote computation capacity in a multi-MD MEC system in this paper. Due to the complexity of the primal optimization problem, a heuristic algorithm is devised. In the algorithm, a subset of tasks to be offloaded is incrementally constructed, and the corresponding offloading sub-problem is then repeatedly solved for this task subset using a two-stage algorithm until the total energy consumption can no longer be further reduced. The first stage of solving the sub-problem is to find the optimal full offloading scheme for the to-offload tasks, which is proved to be a convex optimization problem. For the task subset without a full offloading solution, an effective iterative algorithm is employed in the second stage where the channel allocation and computing resource allocation are optimized alternately. A great number of experiments are given to verify the performance of the proposed algorithm. We observe that the heuristic algorithm shows different performance when adopting different task ordering schemes. The proposed heuristic algorithm is evaluated against three reference schemes, and the results show that it can save up to 14.20% of energy consumption while guaranteeing the delay requirements of all tasks.
引用
收藏
页码:4404 / 4417
页数:14
相关论文
共 50 条
  • [1] Discontinuous Computation Offloading for Energy-Efficient Mobile Edge Computing
    Merluzzi, Mattia
    di Pietro, Nicola
    Di Lorenzo, Paolo
    Strinati, Emilio Calvanese
    Barbarossa, Sergio
    IEEE TRANSACTIONS ON GREEN COMMUNICATIONS AND NETWORKING, 2022, 6 (02): : 1242 - 1257
  • [2] Computation Offloading to a Mobile Edge Computing Server with Delay and Energy Constraints
    Hmimz, Youssef
    El Ghmary, Mohamed
    Chanyour, Tarik
    Cherkaoui Malki, Mohammed Oucamah
    2019 INTERNATIONAL CONFERENCE ON WIRELESS TECHNOLOGIES, EMBEDDED AND INTELLIGENT SYSTEMS (WITS), 2019,
  • [3] Energy-efficient computation offloading and resource allocation for delay-sensitive mobile edge computing
    Wang, Quyuan
    Guo, Songtao
    Liu, Jiadi
    Yan, Yuanyuan
    SUSTAINABLE COMPUTING-INFORMATICS & SYSTEMS, 2019, 21 : 154 - 164
  • [4] Energy-Efficient Computation Offloading in Mobile Edge Computing Systems With Uncertainties
    Ji, Tianxi
    Luo, Changqing
    Yu, Lixing
    Wang, Qianlong
    Chen, Siheng
    Thapa, Arun
    Li, Pan
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2022, 21 (08) : 5717 - 5729
  • [5] Energy-Efficient Mobile Edge Computing Under Delay Constraints
    Li, Zhidu
    Zhu, Ni
    Wu, Dapeng
    Wang, Honggang
    Wang, Ruyan
    IEEE TRANSACTIONS ON GREEN COMMUNICATIONS AND NETWORKING, 2022, 6 (02): : 776 - 786
  • [6] Energy-Efficient Computation Offloading in Collaborative Edge Computing
    Lin, Rongping
    Xie, Tianze
    Luo, Shan
    Zhang, Xiaoning
    Xiao, Yong
    Moran, Bill
    Zukerman, Moshe
    IEEE INTERNET OF THINGS JOURNAL, 2022, 9 (21) : 21305 - 21322
  • [7] Energy Efficient Computation Offloading in Mobile Edge Computing
    Rong, Bo
    Chen, Ying
    Zhang, Ning
    Wu, Yuan
    Shen, Sherman
    IEEE WIRELESS COMMUNICATIONS, 2023, 30 (02) : 8 - 8
  • [8] Energy-efficient cooperative offloading for mobile edge computing
    Shi, Wenjun
    Wu, Jigang
    Chen, Long
    Zhang, Xinxiang
    Wu, Huaiguang
    WIRELESS NETWORKS, 2023, 29 (06) : 2419 - 2435
  • [9] Energy-efficient Autonomic Offloading in Mobile Edge Computing
    Luo, Changqing
    Salinas, Sergio
    Li, Ming
    Li, Pan
    2017 IEEE 15TH INTL CONF ON DEPENDABLE, AUTONOMIC AND SECURE COMPUTING, 15TH INTL CONF ON PERVASIVE INTELLIGENCE AND COMPUTING, 3RD INTL CONF ON BIG DATA INTELLIGENCE AND COMPUTING AND CYBER SCIENCE AND TECHNOLOGY CONGRESS(DASC/PICOM/DATACOM/CYBERSCI, 2017, : 581 - 588
  • [10] Energy-efficient cooperative offloading for mobile edge computing
    Wenjun Shi
    Jigang Wu
    Long Chen
    Xinxiang Zhang
    Huaiguang Wu
    Wireless Networks, 2023, 29 : 2419 - 2435