Diffusion probabilistic models enhance variational autoencoder for crystal structure generative modeling

被引:9
作者
Pakornchote, Teerachote [1 ,2 ]
Choomphon-anomakhun, Natthaphon [1 ,2 ]
Arrerut, Sorrjit [1 ,2 ]
Atthapak, Chayanon [1 ,2 ,3 ]
Khamkaeo, Sakarn [1 ,2 ,3 ]
Chotibut, Thiparat [4 ]
Bovornratanaraks, Thiti [1 ,2 ,3 ]
机构
[1] Chulalongkorn Univ, Fac Sci, Ctr Excellence Phys Energy Mat CE PEM, Dept Phys, Bangkok 10330, Thailand
[2] Chulalongkorn Univ, Fac Sci, Dept Phys, Extreme Condit Phys Res Lab, Bangkok 10330, Thailand
[3] Minist Higher Educ Sci Res & Innovat, Thailand Ctr Excellence Phys, 328 Si Ayutthaya Rd, Bangkok 10400, Thailand
[4] Chulalongkorn Univ, Fac Sci, Dept Phys, Chula Intelligent & Complex Syst, Bangkok 10330, Thailand
关键词
TOTAL-ENERGY CALCULATIONS;
D O I
10.1038/s41598-024-51400-4
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The crystal diffusion variational autoencoder (CDVAE) is a machine learning model that leverages score matching to generate realistic crystal structures that preserve crystal symmetry. In this study, we leverage novel diffusion probabilistic (DP) models to denoise atomic coordinates rather than adopting the standard score matching approach in CDVAE. Our proposed DP-CDVAE model can reconstruct and generate crystal structures whose qualities are statistically comparable to those of the original CDVAE. Furthermore, notably, when comparing the carbon structures generated by the DP-CDVAE model with relaxed structures obtained from density functional theory calculations, we find that the DP-CDVAE generated structures are remarkably closer to their respective ground states. The energy differences between these structures and the true ground states are, on average, 68.1 meV/atom lower than those generated by the original CDVAE. This significant improvement in the energy accuracy highlights the effectiveness of the DP-CDVAE model in generating crystal structures that better represent their ground-state configurations.
引用
收藏
页数:10
相关论文
共 51 条
[1]   PROJECTOR AUGMENTED-WAVE METHOD [J].
BLOCHL, PE .
PHYSICAL REVIEW B, 1994, 50 (24) :17953-17979
[2]   Machine-Learning X-Ray Absorption Spectra to Quantitative Accuracy [J].
Carbone, Matthew R. ;
Topsakal, Mehmet ;
Lu, Deyu ;
Yoo, Shinjae .
PHYSICAL REVIEW LETTERS, 2020, 124 (15)
[3]   New cubic perovskites for one- and two-photon water splitting using the computational materials repository [J].
Castelli, Ivano E. ;
Landis, David D. ;
Thygesen, Kristian S. ;
Dahl, Soren ;
Chorkendorff, Ib ;
Jaramillo, Thomas F. ;
Jacobsen, Karsten W. .
ENERGY & ENVIRONMENTAL SCIENCE, 2012, 5 (10) :9034-9043
[4]   Computational screening of perovskite metal oxides for optimal solar light capture [J].
Castelli, Ivano E. ;
Olsen, Thomas ;
Datta, Soumendu ;
Landis, David D. ;
Dahl, Soren ;
Thygesen, Kristian S. ;
Jacobsen, Karsten W. .
ENERGY & ENVIRONMENTAL SCIENCE, 2012, 5 (02) :5814-5819
[5]  
Cohen T., 2018, P 6 INT C LEARN REPR
[6]   Decoding Phases of Matter by Machine-Learning Raman Spectroscopy [J].
Cui, Anyang ;
Jiang, Kai ;
Jiang, Minhong ;
Shang, Liyan ;
Zhu, Liangqing ;
Hu, Zhigao ;
Xu, Guisheng ;
Chu, Junhao .
PHYSICAL REVIEW APPLIED, 2019, 12 (05)
[7]   Boron vacancy-driven thermodynamic stabilization and improved mechanical properties of AlB2-type tantalum diborides as revealed by first-principles calculations [J].
Ektarawong, A. ;
Johansson, E. ;
Pakornchote, T. ;
Bovornratanaraks, T. ;
Alling, B. .
JOURNAL OF PHYSICS-MATERIALS, 2023, 6 (02)
[8]   Numerically stable algorithms for the computation of reduced unit cells [J].
Grosse-Kunstleve, RW ;
Sauter, NK ;
Adams, PD .
ACTA CRYSTALLOGRAPHICA SECTION A, 2004, 60 :1-6
[9]   RELATIONSHIP BETWEEN REDUCED CELLS IN A GENERAL BRAVAIS LATTICE [J].
GRUBER, B .
ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 1973, A 29 (JUL1) :433-440
[10]  
Guan J., 2023, 11 INT C LEARN REPR