On a two-layer modular arithmetic

被引:0
作者
Chen, Benjamin [1 ]
Li, Yu [1 ]
Zima, Eugene [1 ]
机构
[1] Univ Waterloo, Cheriton Sch Comp Sceince, Waterloo, ON N2L 3G1, Canada
来源
ACM COMMUNICATIONS IN COMPUTER ALGEBRA | 2023年 / 57卷 / 03期
关键词
D O I
10.1145/3637529.3637534
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Two-layer organization of modular arithmetic is considered. Lower layer uses many moduli at hardware precision and simultaneous conversion to/from RNS as described in [2]. Upper layer uses specially selected large moduli allowing for fast reduction and/or reconstruction. Implementation of two di.erent strategies for selecting moduli on the upper layer confirms practicality of proposed approach.
引用
收藏
页码:133 / 136
页数:4
相关论文
共 8 条
[1]  
[Anonymous], 2004, Scaled remainder trees
[2]   Simultaneous Conversions with the Residue Number System Using Linear Algebra [J].
Doliskani, Javad ;
Giorgi, Pascal ;
Lebreton, Romain ;
Schost, Eric .
ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 2018, 44 (03)
[3]   Dense Linear Algebra over Word-Size Prime Fields: the FFLAS and FFPACK Packages [J].
Dumas, Jean-Guillaume ;
Giorgi, Pascal ;
Pernet, Clement .
ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 2008, 35 (03)
[4]  
Geddes KeithO., 1992, Algorithms for Computer Algebra
[5]  
Hoeven Joris, 2017, Mathematical Aspects of Computer and Information Sciences. 7th International Conference, MACIS 2017. Proceedings: LNCS 10693, P95, DOI 10.1007/978-3-319-72453-9_7
[6]  
Knuth D. E., ART COMPUTER PROGRAM, V2
[7]   MULTIPLIKATION GROSSER ZAHLEN [J].
SCHONHAGE, A .
COMPUTING, 1966, 1 (03) :182-+
[8]   Cunningham numbers in modular arithmetic [J].
Zima, E. V. ;
Stewart, A. M. .
PROGRAMMING AND COMPUTER SOFTWARE, 2007, 33 (02) :80-86