Solving Fuzzy Convex Programming Problems via a Projection Neural Network Framework

被引:0
|
作者
Jahangiri, Mohammadreza [1 ]
Nazemi, Alireza [1 ]
机构
[1] Shahrood Univ Technol, Fac Math Sci, POB 3619995161-316, Shahrood, Iran
关键词
Neural networks; fuzzy nonlinear programming problem; fuzzy parameters; stability; convergence; OPTIMIZATION PROBLEMS; NEURODYNAMIC MODEL; EQUATION; RANKING; SYSTEMS;
D O I
10.1142/S1793005725500103
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, the solution of the fuzzy nonlinear optimization problems (FNLOPs) is given using a projection recurrent neural network (RNN) scheme. Since there is a few research for resolving of FNLOP by RNNs, we describe a new framework to solve the problem. By reformulating the original program to an interval problem and then weighting problem, the Karush-Kuhn-Tucker (KKT) conditions are obtained. Moreover, we utilize the KKT conditions into a RNN as a capable tool to solve the problem. Besides, the global convergence and the Lyapunov stability of the neuro-dynamic model are established. In the final step, some simulation examples are stated to validate the obtained results. Reported results are compared with some other previous neural networks.
引用
收藏
页码:159 / 193
页数:35
相关论文
共 50 条
  • [1] A projection neural network model for solving fuzzy convex nonlinear programming problems
    Jahangiri, M.
    Nazemi, A.
    IRANIAN JOURNAL OF FUZZY SYSTEMS, 2024, 21 (03): : 37 - 63
  • [2] Application of projection neural network in solving convex programming problems
    Effati, S.
    Ghomashi, A.
    Nazemi, A. R.
    APPLIED MATHEMATICS AND COMPUTATION, 2007, 188 (02) : 1103 - 1114
  • [3] The projection neural network for solving convex nonlinear programming
    Yang, Yongqing
    Xu, Xianyun
    ADVANCED INTELLIGENT COMPUTING THEORIES AND APPLICATIONS, PROCEEDINGS: WITH ASPECTS OF ARTIFICIAL INTELLIGENCE, 2007, 4682 : 174 - 181
  • [4] Neural network for solving convex quadratic bilevel programming problems
    He, Xing
    Li, Chuandong
    Huang, Tingwen
    Li, Chaojie
    NEURAL NETWORKS, 2014, 51 : 17 - 25
  • [5] Solving quadratic programming problems by delayed projection neural network
    Yang, Yongqing
    Cao, Jinde
    IEEE TRANSACTIONS ON NEURAL NETWORKS, 2006, 17 (06): : 1630 - 1634
  • [6] An efficient projection neural network for solving bilinear programming problems
    Effati, Sohrab
    Mansoori, Amin
    Eshaghnezhad, Mohammad
    NEUROCOMPUTING, 2015, 168 : 1188 - 1197
  • [7] A Discrete-time Projection Neural Network for Solving Convex Quadratic Programming Problems with Hybrid Constraints
    Fengqiu Liu
    Jianmin Wang
    Hongxu Zhang
    Pengfei Li
    International Journal of Control, Automation and Systems, 2023, 21 : 328 - 337
  • [8] A Discrete-time Projection Neural Network for Solving Convex Quadratic Programming Problems with Hybrid Constraints
    Liu, Fengqiu
    Wang, Jianmin
    Zhang, Hongxu
    Li, Pengfei
    INTERNATIONAL JOURNAL OF CONTROL AUTOMATION AND SYSTEMS, 2023, 21 (01) : 328 - 337
  • [9] A new nonlinear neural network for solving convex nonlinear programming problems
    Effati, S
    Baymani, M
    APPLIED MATHEMATICS AND COMPUTATION, 2005, 168 (02) : 1370 - 1379
  • [10] A New Delayed Projection Neural Network for Solving Quadratic Programming Problems
    Huang, Banan
    Zhang, Huaguang
    Wang, Zhanshan
    Dong, Meng
    2010 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS IJCNN 2010, 2010,