How the Porous Transport Layer Interface Affects Catalyst Utilization and Performance in Polymer Electrolyte Water Electrolysis

被引:42
作者
Weber, Carl Cesar [1 ]
Wrubel, Jacob A. [2 ]
Gubler, Lorenz [1 ]
Bender, Guido [2 ]
De Angelis, Salvatore [1 ]
Buchi, Felix N. [1 ]
机构
[1] Paul Scherrer Inst, Electrochem Lab, CH-5232 Villigen, Switzerland
[2] Natl Renewable Energy Lab, Golden, CO 80401 USA
关键词
hydrogen; PEM electrolysis; polymer electrolytewater electrolysis; active catalyst layer; poroustransport layer; interface PTL; CL; catalyst utilization; iridium loading; LIQUID/GAS DIFFUSION LAYERS; STRUCTURAL-PROPERTIES; MEMBRANE; MICROSTRUCTURE; EVOLUTION; TOMOGRAPHY; EFFICIENCY; CELLS;
D O I
10.1021/acsami.3c04151
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Cost reduction andfast scale-up of electrolyzer technologies areessential for decarbonizing several crucial branches of industry.For polymer electrolyte water electrolysis, this requires a dramaticreduction of the expensive and scarce iridium-based catalyst, makingits efficient utilization a key factor. The interfacial propertiesbetween the porous transport layer (PTL) and the catalyst layer (CL)are crucial for optimal catalyst utilization. Therefore, it is essentialto understand the relationship between this interface and electrochemicalperformance. In this study, we fabricated a matrix of two-dimensionalinterface layers with a well-known model structure, integrating themas an additional layer between the PTL and the CL. By characterizingthe performance and conducting an in-depth analysis of the overpotentials,we were able to estimate the catalyst utilization at different currentdensities, correlating them to the geometric properties of the modelPTLs. We found that large areas of the CL become inactive at increasingcurrent density either due to dry-out, oxygen saturation (under thePTL), or the high resistance of the CL away from the pore edges. Weexperimentally estimated the water penetration in the CL under thePTL to be & AP;20 & mu;m. Experimental results were corroboratedusing a 3D-multiphysics model to calculate the current distributionin the CL and estimate the impact of membrane dry-out. Finally, weobserved a strong pressure dependency on performance and high-frequencyresistance, which indicates that with the employed model PTLs, a significantgas phase accumulates in the CL under the lands, hindering the distributionof liquid water. The findings of this work can be extrapolated toimprove and engineer PTLs with advanced interface properties, helpingto reach the required target goals in cost and iridium loadings.
引用
收藏
页码:34750 / 34763
页数:14
相关论文
共 54 条
[1]   Recent Development of Oxygen Evolution Electrocatalysts in Acidic Environment [J].
An, Li ;
Wei, Chao ;
Lu, Min ;
Liu, Hanwen ;
Chen, Yubo ;
Scherer, Guenther G. ;
Fisher, Adrian C. ;
Xi, Pinxian ;
Xu, Zhichuan J. ;
Yan, Chun-Hua .
ADVANCED MATERIALS, 2021, 33 (20)
[2]   Feasibility study of using microfluidic platforms for visualizing bubble flows in electrolyzer gas diffusion layers [J].
Arbabi, F. ;
Kalantarian, A. ;
Abouatallah, R. ;
Wang, R. ;
Wallace, J. S. ;
Bazylak, A. .
JOURNAL OF POWER SOURCES, 2014, 258 :142-149
[3]   Communication-Contribution of Catalyst Layer Proton Transport Resistance to Voltage Loss in Polymer Electrolyte Water Electrolyzers [J].
Babic, Ugljesa ;
Schmidt, Thomas J. ;
Gubler, Lorenz .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2018, 165 (15) :J3016-J3018
[4]   Review-Identifying Critical Gaps for Polymer Electrolyte Water Electrolysis Development [J].
Babic, Ugljesa ;
Suermann, Michel ;
Buechi, Felix N. ;
Gubler, Lorenz ;
Schmidt, Thomas J. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2017, 164 (04) :F387-F399
[5]   Analysis of Voltage Losses in PEM Water Electrolyzers with Low Platinum Group Metal Loadings [J].
Bernt, Maximilian ;
Siebel, Armin ;
Gasteiger, Hubert A. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2018, 165 (05) :F305-F314
[6]   Influence of Ionomer Content in IrO2/TiO2 Electrodes on PEM Water Electrolyzer Performance [J].
Bernt, Maximilian ;
Gasteiger, Hubert A. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2016, 163 (11) :F3179-F3189
[7]   Hydraulic ex situ through-plane characterization of porous transport layers in PEM water electrolysis cells [J].
Bromberger, Kolja ;
Ghinaiya, Jagdishkumar ;
Lickert, Thomas ;
Fallisch, Arne ;
Smolinka, Tom .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2018, 43 (05) :2556-2569
[8]   Enhancing PEM water electrolysis efficiency by reducing the extent of Ti gas diffusion layer passivation [J].
Bystron, T. ;
Vesely, M. ;
Paidar, M. ;
Papakonstantinou, G. ;
Sundmacher, K. ;
Bensmann, B. ;
Hanke-Rauschenbach, R. ;
Bouzek, K. .
JOURNAL OF APPLIED ELECTROCHEMISTRY, 2018, 48 (06) :713-723
[9]   A comprehensive review on PEM water electrolysis [J].
Carmo, Marcelo ;
Fritz, David L. ;
Merge, Juergen ;
Stolten, Detlef .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2013, 38 (12) :4901-4934
[10]   Understanding the microstructure of a core-shell anode catalyst layer for polymer electrolyte water electrolysis [J].
De Angelis, Salvatore ;
Schuler, Tobias ;
Sabharwal, Mayank ;
Holler, Mirko ;
Guizar-Sicairos, Manuel ;
Mueller, Elisabeth ;
Buechi, Felix N. .
SCIENTIFIC REPORTS, 2023, 13 (01)