Unimolecular dissociation of C6H6-C6H5Cl, C6H6-C6H3Cl3, and C6H6-C6Cl6 complexes using machine learning approach

被引:1
作者
Deb, Basudha [1 ]
Anal, S. R. Ngamwal [2 ]
Mahanta, Himashree [1 ]
Yogita [2 ]
Paul, Amit Kumar [1 ]
机构
[1] Natl Inst Technol Meghalaya, Dept Chem, Shillong 793003, Meghalaya, India
[2] Natl Inst Technol Meghalaya, Dept Comp Sci & Engn, Shillong 793003, Meghalaya, India
关键词
INFRARED-SPECTROSCOPY; DYNAMICS SIMULATIONS; NEURAL-NETWORKS; DIMER; PREDISSOCIATION; PREDICTION; CHEMISTRY; TUTORIAL; BENZENE;
D O I
10.1063/5.0139864
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The application of Machine Learning (ML) algorithms in chemical sciences, particularly computational chemistry, is a vastly emerging area of modern research. While many applications of ML techniques have already been in place to use ML based potential energies in various dynamical simulation studies, specific applications are also being successfully tested. In this work, the ML algorithms are tested to calculate the unimolecular dissociation time of benzene-hexachlorobenzene, benzene-trichlorobenzene, and benzene-monochlorobenzene complexes. Three ML algorithms, namely, Decision-Tree-Regression (DTR), Multi-Layer Perceptron, and Support Vector Regression are considered. The algorithms are trained with simulated dissociation times as functions (attributes) of complexes' intramolecular and intermolecular vibrational energies. The simulation data are used for an excitation temperature of 1500 K. Considering that the converged result is obtained with 1500 trajectories, an ML algorithm trained with 700 simulation points provides the same dissociation rate constant within statistical uncertainty as obtained from the converged 1500 trajectory result. The DTR algorithm is also used to predict 1000 K simulation results using 1500 K simulation data.
引用
收藏
页数:13
相关论文
共 56 条
[1]   Unimolecular dissociation of C6H6-C6F6 complex in N2 bath and comparison with gas phase dynamics [J].
Ahamed, Sk Samir ;
Mahanta, Himashree ;
Paul, Amit K. .
CHEMICAL PHYSICS LETTERS, 2019, 730 (630-633) :630-633
[2]  
[Anonymous], 2014, Data Mining With Decision Trees: Theory and Applications
[3]  
[Anonymous], 2003, Moneyball: The Art of Winning an Unfair Game
[4]   Machine Learning-Based Microclimate Model for Indoor Air Temperature and Relative Humidity Prediction in a Swine Building [J].
Arulmozhi, Elanchezhian ;
Basak, Jayanta Kumar ;
Sihalath, Thavisack ;
Park, Jaesung ;
Kim, Hyeon Tae ;
Moon, Byeong Eun .
ANIMALS, 2021, 11 (01) :1-24
[5]  
Awad M., 2015, Neural Information Processing: Letters and Reviews, P67
[6]   TURBOMOLE: Modular program suite for ab initio quantum-chemical and condensed-matter simulations [J].
Balasubramani, Sree Ganesh ;
Chen, Guo P. ;
Coriani, Sonia ;
Diedenhofen, Michael ;
Frank, Marius S. ;
Franzke, Yannick J. ;
Furche, Filipp ;
Grotjahn, Robin ;
Harding, Michael E. ;
Haettig, Christof ;
Hellweg, Arnim ;
Helmich-Paris, Benjamin ;
Holzer, Christof ;
Huniar, Uwe ;
Kaupp, Martin ;
Khah, Alireza Marefat ;
Khani, Sarah Karbalaei ;
Mueller, Thomas ;
Mack, Fabian ;
Nguyen, Brian D. ;
Parker, Shane M. ;
Perlt, Eva ;
Rappoport, Dmitrij ;
Reiter, Kevin ;
Roy, Saswata ;
Rueckert, Matthias ;
Schmitz, Gunnar ;
Sierka, Marek ;
Tapavicza, Enrico ;
Tew, David P. ;
van Wuellen, Christoph ;
Voora, Vamsee K. ;
Weigend, Florian ;
Wodynski, Artur ;
Yu, Jason M. .
JOURNAL OF CHEMICAL PHYSICS, 2020, 152 (18)
[7]   Searching for exotic particles in high-energy physics with deep learning [J].
Baldi, P. ;
Sadowski, P. ;
Whiteson, D. .
NATURE COMMUNICATIONS, 2014, 5
[8]   Representing potential energy surfaces by high-dimensional neural network potentials [J].
Behler, J. .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2014, 26 (18)
[9]   Constructing high-dimensional neural network potentials: A tutorial review [J].
Behler, Joerg .
INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 2015, 115 (16) :1032-1050
[10]   Atom-centered symmetry functions for constructing high-dimensional neural network potentials [J].
Behler, Joerg .
JOURNAL OF CHEMICAL PHYSICS, 2011, 134 (07)