Synergy of Small Antiviral Molecules on a Black-Phosphorus Nanocarrier: Machine Learning and Quantum Chemical Simulation Insights

被引:4
作者
Laref, Slimane [1 ]
Harrou, Fouzi [2 ]
Wang, Bin [3 ]
Sun, Ying [2 ]
Laref, Amel [4 ]
Laleg-Kirati, Taous-Meriem [2 ]
Gojobori, Takashi [1 ]
Gao, Xin [1 ]
机构
[1] King Abdullah Univ Sci & Technol KAUST, Computat Biosci Res Ctr CBRC, Thuwal 239556900, Saudi Arabia
[2] King Abdullah Univ Sci & Technol KAUST, Comp Elect & Math Sci & Engn CEMSE Div, Thuwal 239556900, Saudi Arabia
[3] Univ Oklahoma, Ctr Interfacial React Engn CIRE, Sch Chem Biol & Mat Engn, Norman, OK 73019 USA
[4] King Saud Univ, Coll Sci, Dept Phys & Astron, Riyadh 11451, Saudi Arabia
关键词
MD; machine learning; DFT; inhibitor; black phosphorus; thermodynamic; molecular states; drug vehicles; SUPPORT VECTOR REGRESSION; TOTAL-ENERGY CALCULATIONS; FAVIPIRAVIR T-705; GRAPHENE; EBSELEN; ALGORITHMS; PREVENTION; PREDICTION; INHIBITOR; SAFETY;
D O I
10.3390/molecules28083521
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Favipiravir (FP) and Ebselen (EB) belong to a broad range of antiviral drugs that have shown active potential as medications against many viruses. Employing molecular dynamics simulations and machine learning (ML) combined with van der Waals density functional theory, we have uncovered the binding characteristics of these two antiviral drugs on a phosphorene nanocarrier. Herein, by using four different machine learning models (i.e., Bagged Trees, Gaussian Process Regression (GPR), Support Vector Regression (SVR), and Regression Trees (RT)), the Hamiltonian and the interaction energy of antiviral molecules in a phosphorene monolayer are trained in an appropriate way. However, training efficient and accurate models for approximating the density functional theory (DFT) is the final step in using ML to aid in the design of new drugs. To improve the prediction accuracy, the Bayesian optimization approach has been employed to optimize the GPR, SVR, RT, and BT models. Results revealed that the GPR model obtained superior prediction performance with an R(2 )of 0.9649, indicating that it can explain 96.49% of the data's variability. Then, by means of DFT calculations, we examine the interaction characteristics and thermodynamic properties in a vacuum and a continuum solvent interface. These results illustrate that the hybrid drug is an enabled, functionalized 2D complex with vigorous thermostability. The change in Gibbs free energy at different surface charges and temperatures implies that the FP and EB molecules are allowed to adsorb from the gas phase onto the 2D monolayer at different pH conditions and high temperatures. The results reveal a valuable antiviral drug therapy loaded by 2D biomaterials that may possibly open a new way of auto-treating different diseases, such as SARS-CoV, in primary terms.
引用
收藏
页数:22
相关论文
共 84 条
[1]   compass iii: automated fitting workflows and extension to ionic liquids [J].
Akkermans, Reinier L. C. ;
Spenley, Neil A. ;
Robertson, Struan H. .
MOLECULAR SIMULATION, 2021, 47 (07) :540-551
[2]   A proficient approach to forecast COVID-19 spread via optimized dynamic machine learning models [J].
Alali, Yasminah ;
Harrou, Fouzi ;
Sun, Ying .
SCIENTIFIC REPORTS, 2022, 12 (01)
[3]   Efficient Wind Power Prediction Using Machine Learning Methods: A Comparative Study [J].
Alkesaiberi, Abdulelah ;
Harrou, Fouzi ;
Sun, Ying .
ENERGIES, 2022, 15 (07)
[4]   2D metal carbides and nitrides (MXenes) for energy storage [J].
Anasori, Babak ;
Lukatskaya, Maria R. ;
Gogotsi, Yury .
NATURE REVIEWS MATERIALS, 2017, 2 (02)
[5]  
[Anonymous], 2017, P 2017 8 INT C INFOR
[6]   Production and processing of graphene and related materials [J].
Backes, Claudia ;
Abdelkader, Amr M. ;
Alonso, Concepcion ;
Andrieux-Ledier, Amandine ;
Arenal, Raul ;
Azpeitia, Jon ;
Balakrishnan, Nilanthy ;
Banszerus, Luca ;
Barjon, Julien ;
Bartali, Ruben ;
Bellani, Sebastiano ;
Berger, Claire ;
Berger, Reinhard ;
Ortega, M. M. Bernal ;
Bernard, Carlo ;
Beton, Peter H. ;
Beyer, Andre ;
Bianco, Alberto ;
Boggild, Peter ;
Bonaccorso, Francesco ;
Barin, Gabriela Borin ;
Botas, Cristina ;
Bueno, Rebeca A. ;
Carriazo, Daniel ;
Castellanos-Gomez, Andres ;
Christian, Meganne ;
Ciesielski, Artur ;
Ciuk, Tymoteusz ;
Cole, Matthew T. ;
Coleman, Jonathan ;
Coletti, Camilla ;
Crema, Luigi ;
Cun, Huanyao ;
Dasler, Daniela ;
De Fazio, Domenico ;
Diez, Noel ;
Drieschner, Simon ;
Duesberg, Georg S. ;
Fasel, Roman ;
Feng, Xinliang ;
Fina, Alberto ;
Forti, Stiven ;
Galiotis, Costas ;
Garberoglio, Giovanni ;
Garcia, Jorge M. ;
Antonio Garrido, Jose ;
Gibertini, Marco ;
Goelzhaeuser, Armin ;
Gomez, Julio ;
Greber, Thomas .
2D MATERIALS, 2020, 7 (02)
[7]   An empirical comparison of voting classification algorithms: Bagging, boosting, and variants [J].
Bauer, E ;
Kohavi, R .
MACHINE LEARNING, 1999, 36 (1-2) :105-139
[8]  
Bergstra J, 2012, J MACH LEARN RES, V13, P281
[9]   Clearance and persistence of SARS-CoV-2 RNA in patients with COVID-19 [J].
Carmo, Analia ;
Pereira-Vaz, Joao ;
Mota, Vanda ;
Mendes, Alexandra ;
Morais, Celia ;
da Silva, Andreia Coelho ;
Camilo, Elisabete ;
Pinto, Catarina Silva ;
Cunha, Elizabete ;
Pereira, Janet ;
Coucelo, Margarida ;
Martinho, Patricia ;
Correia, Lurdes ;
Marques, Gilberto ;
Araujo, Lucilia ;
Rodrigues, Fernando .
JOURNAL OF MEDICAL VIROLOGY, 2020, 92 (10) :2227-2231
[10]   Cinanserin is an inhibitor of the 3C-like proteinase of severe acute respiratory syndrome coronavirus and strongly reduces virus replication in vitro [J].
Chen, LL ;
Gui, CS ;
Luo, XM ;
Yang, QG ;
Günther, S ;
Scandella, E ;
Drosten, C ;
Bai, D ;
He, XC ;
Ludewig, B ;
Chen, J ;
Luo, HB ;
Yang, YM ;
Yang, YF ;
Zou, JP ;
Thiel, V ;
Chen, K ;
Shen, JH ;
Xu, S ;
Jiang, HL .
JOURNAL OF VIROLOGY, 2005, 79 (11) :7095-7103