ON UNIQUENESS OF RECOVERING COEFFICIENTS FROM LOCALIZED DIRICHLET-TO-NEUMANN MAP FOR PIECEWISE HOMOGENEOUS PIEZOELECTRICITY

被引:1
作者
Xu, Jiali [1 ]
Xu, Xiang [1 ]
机构
[1] Zhejiang Univ, Sch Math Sci, Hangzhou, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
inverse boundary value problem; uniqueness; localized Dirichlet-to-Neumann map; piezoelectricity; BOUNDARY-VALUE PROBLEM; LIPSCHITZ STABILITY; CONDUCTIVITY;
D O I
10.1137/21M1447957
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper considers an inverse problem on determining coefficients of piecewise homogeneous piezoelectric equations from a localized Dirichlet-to-Neumann map on partial bound-aries. Assume the bounded domain can be divided into finite subdomains, in which the unknown coefficients including the anisotropic elastic tensor, the piezoelectric tensor, and the dielectric tensor are constants. In this paper, two different cases are considered: the subdomains are either known and Lipschitz or unknown and subanalytic. For both cases, the unknown coefficients can be uniquely determined from a given localized Dirichlet-to-Neumann map.
引用
收藏
页码:571 / 602
页数:32
相关论文
共 29 条
  • [1] Green's function of anisotropic piezoelectricity
    Akamatsu, M
    Tanuma, K
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1997, 453 (1958): : 473 - 487
  • [2] Lipschitz stability for the inverse conductivity problem
    Alessandrini, G
    Vessella, S
    [J]. ADVANCES IN APPLIED MATHEMATICS, 2005, 35 (02) : 207 - 241
  • [3] EIT IN A LAYERED ANISOTROPIC MEDIUM
    Alessandrini, Giovanni
    de Hoop, Maarten, V
    Gaburro, Romina
    Sincich, Eva
    [J]. INVERSE PROBLEMS AND IMAGING, 2018, 12 (03) : 667 - 676
  • [4] Uniqueness for the electrostatic inverse boundary value problem with piecewise constant anisotropic conductivities
    Alessandrini, Giovanni
    de Hoop, Maarten V.
    Gaburro, Romina
    [J]. INVERSE PROBLEMS, 2017, 33 (12)
  • [5] UNIQUENESS AND LIPSCHITZ STABILITY FOR THE IDENTIFICATION OF LAME PARAMETERS FROM BOUNDARY MEASUREMENTS
    Beretta, Elena
    Francini, Elisa
    Vessella, Sergio
    [J]. INVERSE PROBLEMS AND IMAGING, 2014, 8 (03) : 611 - 644
  • [6] Lipschitz Stability for the Electrical Impedance Tomography Problem: The Complex Case
    Beretta, Elena
    Francini, Elisa
    [J]. COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2011, 36 (10) : 1723 - 1749
  • [7] UNIQUENESS IN THE INVERSE BOUNDARY VALUE PROBLEM FOR PIECEWISE HOMOGENEOUS ANISOTROPIC ELASTICITY
    Carstea, Catalin, I
    Honda, Naofumi
    Nakamura, Gen
    [J]. SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2018, 50 (03) : 3291 - 3302
  • [8] The Construction and Analysis of a Posteriori Error Estimators for Piezoelectricity Stationary Problems
    Chaban, Fedir
    Shynkarenko, Heorgiy
    [J]. MODERN ANALYSIS AND APPLICATIONS: MARK KREIN CENTENARY CONFERENCE, VOL 2: DIFFERENTIAL OPERATORS AND MECHANICS, 2009, 191 : 291 - +
  • [9] Cimatti Giovanni., 2004, Ann. Mat. Pura Appl, V183, P495
  • [10] Green's function for elliptic systems: existence and Delmotte-Deuschel bounds
    Conlon, Joseph G.
    Giunti, Arianna
    Otto, Felix
    [J]. CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2017, 56 (06)