The community-function landscape of microbial consortia

被引:36
作者
Sanchez, Alvaro [1 ,2 ,3 ]
Bajic, Djordje [1 ,2 ]
Diaz-Colunga, Juan [1 ,2 ]
Skwara, Abigail [1 ,2 ]
Vila, Jean C. C. [1 ,2 ]
Kuehn, Seppe [4 ,5 ]
机构
[1] Yale Univ, Dept Ecol & Evolutionary Biol, New Haven, CT 06511 USA
[2] Yale Univ, Microbial Sci Inst, New Haven, CT 06511 USA
[3] CNB CSIC, Dept Microbial Biotechnol, Campus Cantoblanco, Madrid, Spain
[4] Univ Chicago, Ctr Phys Evolving Syst, Chicago, IL USA
[5] Univ Chicago, Dept Ecol & Evolut, Chicago, IL USA
关键词
DIRECTED EVOLUTION; FITNESS LANDSCAPES; ARTIFICIAL SELECTION; ORDER INTERACTIONS; ESCHERICHIA-COLI; DYNAMICS; DESIGN; EVOLVABILITY; EPISTASIS; PROTEINS;
D O I
10.1016/j.cels.2022.12.011
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Quantitatively linking the composition and function of microbial communities is a major aspiration of microbial ecology. Microbial community functions emerge from a complex web of molecular interactions between cells, which give rise to population-level interactions among strains and species. Incorporating this complexity into predictive models is highly challenging. Inspired by a similar problem in genetics of predicting quantitative phenotypes from genotypes, an ecological community-function (or structure-function) landscape could be defined that maps community composition and function. In this piece, we present an overview of our current understanding of these community landscapes, their uses, limitations, and open questions. We argue that ex-ploiting the parallels between both landscapes could bring powerful predictive methodologies from evolution and genetics into ecology, providing a boost to our ability to engineer and optimize microbial consortia.
引用
收藏
页码:122 / 134
页数:13
相关论文
共 107 条
[1]   A thousand empirical adaptive landscapes and their navigability [J].
Aguilar-Rodriguez, Jose ;
Payne, Joshua L. ;
Wagner, Andreas .
NATURE ECOLOGY & EVOLUTION, 2017, 1 (02)
[2]   Engineering for biofuels: exploiting innate microbial capacity or importing biosynthetic potential? [J].
Alper, Hal ;
Stephanopoulos, Gregory .
NATURE REVIEWS MICROBIOLOGY, 2009, 7 (10) :715-723
[3]   Innovation by Evolution: Bringing New Chemistry to Life (Nobel Lecture) [J].
Arnold, Frances H. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2019, 58 (41) :14420-14426
[4]   Effects of microbial evolution dominate those of experimental host-mediated indirect selection [J].
Arora, Jigyasa ;
Brisbin, Margaret A. Mars ;
Mikheyev, Alexander S. .
PEERJ, 2020, 8
[5]  
George AB, 2021, bioRxiv, DOI [10.1101/2021.12.14.472701, 10.1101/2021.12.14.472701, DOI 10.1101/2021.12.14.472701]
[6]  
Baas P, 2020, bioRxiv, DOI [10.1101/2020.11.12.379529, 10.1101/2020.11.12.379529, DOI 10.1101/2020.11.12.379529]
[7]   Phosphorus mobilizing consortium Mammoth P™ enhances plant growth [J].
Baas, Peter ;
Bell, Colin ;
Mancini, Lauren M. ;
Lee, Melanie N. ;
Conant, Richard T. ;
Wallenstein, Matthew D. .
PEERJ, 2016, 4
[8]   Recurrent neural networks enable design of multifunctional synthetic human gut microbiome dynamics [J].
Baranwal, Mayank ;
Clark, Ryan L. ;
Thompson, Jaron ;
Sun, Zeyu ;
Hero, Alfred O. ;
Venturelli, Ophelia S. .
ELIFE, 2022, 11
[9]  
Belda I, 2017, FRONT MICROBIOL, V8, DOI [10.3389/fmicb.2017.00821, 10.3389/fmicb.2017.01065]
[10]   Uncovering emergent interactions in three-way combinations of stressors [J].
Beppler, Casey ;
Tekin, Elif ;
Mao, Zhiyuan ;
White, Cynthia ;
McDiarmid, Cassandra ;
Vargas, Emily ;
Miller, Jeffrey H. ;
Savage, Van M. ;
Yeh, Pamela J. .
JOURNAL OF THE ROYAL SOCIETY INTERFACE, 2016, 13 (125)