Bounds for the Diameters of Orbital Graphs of Affine Groups

被引:3
作者
Maroti, Attila [1 ]
Skresanov, Saveliy V. [2 ]
机构
[1] Alfred Renyi Inst Math, Realtanoda utca 13-15, H-1053 Budapest, Hungary
[2] Sobolev Inst Math, 4 Acad Koptyug Ave, Novosibirsk, Russia
关键词
Orbital graph; Diameter; Affine primitive permutation group; FINITE; THEOREM;
D O I
10.1007/s10013-023-00607-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
General bounds are presented for the diameters of orbital graphs of finite affine primitive permutation groups. For example, it is proved that the orbital diameter of a finite affine primitive permutation group with a nontrivial point stabilizer H <= GL(V ), where the vector space V has dimension d over the prime field, can be bounded in terms of d and log |V |/ log |H | only. Several infinite families of affine primitive permutation groups with large orbital diameter are constructed. The results are independent from the classification of finite simple groups.
引用
收藏
页码:617 / 631
页数:15
相关论文
共 24 条
[1]   ON THE DIAMETER AND BISECTOR SIZE OF CAYLEY-GRAPHS [J].
ANNEXSTEIN, F ;
BAUMSLAG, M .
MATHEMATICAL SYSTEMS THEORY, 1993, 26 (03) :271-291
[2]  
BABAI L, 1990, ANN IEEE SYMP FOUND, P857
[3]   ON THE DIAMETER OF PERMUTATION-GROUPS [J].
BABAI, L ;
SERESS, A .
EUROPEAN JOURNAL OF COMBINATORICS, 1992, 13 (04) :231-243
[4]   On the diameter of Eulerian orientations of graphs [J].
Babai, Laszlo .
PROCEEDINGS OF THE SEVENTHEENTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, 2006, :822-831
[5]   Spectra of finite linear and unitary groups [J].
Buturlakin, A. A. .
ALGEBRA AND LOGIC, 2008, 47 (02) :91-99
[6]  
Cameron Peter J., 1999, Permutation groups, V45, DOI DOI 10.1017/CBO9780511623677
[7]   ON THE SIMS CONJECTURE AND DISTANCE TRANSITIVE GRAPHS [J].
CAMERON, PJ ;
PRAEGER, CE ;
SAXL, J ;
SEITZ, GM .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 1983, 15 (SEP) :499-506
[8]  
Cochrane T., 2012, INTEGERS, V12, P385, DOI [10.1515/integ.2011.109, DOI 10.1515/INTEG.2011.109]
[9]   Modular analogues of Jordan's theorem for finite linear groups [J].
Collins, Michael J. .
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2008, 624 :143-171
[10]  
Gorenstein D., 1994, Mathematical Surveys and Monographs, V40