HYPERBOLIC KENMOTSU MANIFOLD ADMITTING A NEW TYPE OF SEMI-SYMMETRIC NON-METRIC CONNECTION

被引:0
|
作者
Singh, Abhishek [1 ]
Das, Lovejoy S. [2 ]
Pankaj [3 ]
Patel, Shraddha [1 ]
机构
[1] Dr Rammanohar Lohia Avadh Univ, Dept Math & Stat, Ayodhya 224001, UP, India
[2] Kent State Univ, Dept Math, Kent, OH USA
[3] Pranveer Singh Inst Technol, Dept Math, Kanpur 209305, Uttar Pradesh, India
关键词
Semi-symmetric non-metric; hyperbolic Kenmotsu manifold; Ricci soliton; Einstein manifold; Ricci semi-symmetric;
D O I
10.22190/FUMI230207008S
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this work, we study a new type of semi -symmetric non -metric connection on hyperbolic Kenmotsu manifold. Some Riemannian curvature's characteristics on hyperbolic Kenmotsu manifold are investigated. The properties of semi -symmetric, locally phi -symmetric and Ricci semi -symmetric hyperbolic Kenmotsu manifold endowed with a new type of semi -symmetric non -metric connection are evaluated. A semi -symmetric and Ricci semi -symmetric hyperbolic Kenmotsu manifold with a semi -symmetric nonmetric connection is also demonstrated, the Ricci soliton of data (g(1), xi(sic), lambda) is shrinking. Finally, we demonstrate our results with a 3 -dimensional example.
引用
收藏
页码:123 / 139
页数:17
相关论文
共 50 条
  • [1] Some Properties of Kenmotsu Manifolds Admitting a New Type of Semi-Symmetric Non-Metric Connection
    Singh, Abhishek
    Das, Lovejoy S.
    Prasad, Rajendra
    Kumar, Lalit
    COMMUNICATIONS IN MATHEMATICS AND APPLICATIONS, 2024, 15 (01): : 145 - 160
  • [2] ON A SEMI-SYMMETRIC NON-METRIC CONNECTION IN AN ALMOST KENMOTSU MANIFOLD WITH NULLITY DISTRIBUTION
    Ghosh, Gopal
    FACTA UNIVERSITATIS-SERIES MATHEMATICS AND INFORMATICS, 2016, 31 (01): : 245 - 257
  • [3] On a type of semi-symmetric non-metric connection on a Riemannian manifold
    Sengupta, J
    De, UC
    Binh, TQ
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2000, 31 (12): : 1659 - 1670
  • [4] On Concircular Curvature Tensor with respect to the Semi-symmetric Non-metric Connection in a Kenmotsu Manifold
    Haseeb, Abdul
    KYUNGPOOK MATHEMATICAL JOURNAL, 2016, 56 (03): : 951 - 964
  • [5] A SPECIAL TYPE OF SEMI-SYMMETRIC NON-METRIC CONNECTION ON A RIEMANNIAN MANIFOLD
    De, Uday Chand
    Han, Yan Ling
    Zhao, Pei Biao
    FACTA UNIVERSITATIS-SERIES MATHEMATICS AND INFORMATICS, 2016, 31 (02): : 529 - 541
  • [6] On almost pseudo symmetric manifolds admitting a type of semi-symmetric non-metric connection
    De, A.
    ACTA MATHEMATICA HUNGARICA, 2009, 125 (1-2) : 183 - 190
  • [7] On almost pseudo symmetric manifolds admitting a type of semi-symmetric non-metric connection
    A. De
    Acta Mathematica Hungarica, 2009, 125 : 183 - 190
  • [8] On a semi-symmetric metric connection in an (epsilon)-Kenmotsu manifold
    Singh, Ram Nawal
    Pandey, Shravan Kumar
    Pandey, Giteshwari
    Tiwari, Kiran
    COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2014, 29 (02): : 331 - 343
  • [9] On semi-invariant submanifolds of a nearly Sasakian manifold admitting a semi-symmetric non-metric connection
    Das, Lovejoy S.
    Ahmad, Mobin
    Haseeb, Abdul
    JOURNAL OF APPLIED ANALYSIS, 2011, 17 (01) : 119 - 130
  • [10] On Submanifolds in a Riemannian Manifold with a Semi-Symmetric Non-Metric Connection
    Li, Jing
    He, Guoqing
    Zhao, Peibiao
    SYMMETRY-BASEL, 2017, 9 (07):