Orbital elasticity control of phase diagram for La0.67Sr0.33MnO3 films

被引:0
作者
Gao, Ang [1 ,2 ]
Zhang, Qinghua [3 ]
Liu, Zhuohui [3 ]
Meng, Fanqi [4 ]
Shang, Tongtong [4 ]
Ni, Hao [5 ]
Huang, Heyi [3 ]
Du, Jianyu [3 ]
Li, Xinyan [3 ]
Yu, Botao [1 ,2 ]
Su, Dong [3 ]
Jin, Kuijuan [3 ]
Ge, Chen [3 ]
Ji, Yanzhou [6 ,7 ]
Wang, Bo [6 ,7 ]
Yu, Qian [8 ]
Zhang, Ze [8 ]
Chen, Longqing [6 ,7 ]
Gu, Lin [1 ,2 ]
Nan, Cewen [4 ]
机构
[1] Tsinghua Univ, Sch Mat Sci & Engn, Beijing Natl Ctr Electron Microscopy, Beijing 100084, Peoples R China
[2] Tsinghua Univ, Sch Mat Sci & Engn, Lab Adv Mat, Beijing 100084, Peoples R China
[3] Chinese Acad Sci, Inst Phys, Beijing Natl Lab Condensed Matter Phys, Beijing 100190, Peoples R China
[4] Tsinghua Univ, Sch Mat Sci & Engn, State Key Lab New Ceram & Fine Proc, Beijing 100084, Peoples R China
[5] China Univ Petr East China, Coll Sci, Qingdao 266580, Peoples R China
[6] Penn State Univ, Mat Res Inst, University Pk, PA 16802 USA
[7] Penn State Univ, Dept Mat Sci & Engn, University Pk, PA 16802 USA
[8] Zhejiang Univ, Sch Mat Sci & Engn, Hangzhou 312227, Peoples R China
基金
北京市自然科学基金; 中国博士后科学基金; 中国国家自然科学基金;
关键词
phase diagram; orbital energy level; orbital elasticity law; structural design; La0.67Sr0.33MnO3; films; METAL-INSULATOR-TRANSITION; TOTAL-ENERGY CALCULATIONS; STATE;
D O I
10.1007/s40843-023-2711-x
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Transition metal oxides display rich functionalities, but intricate internal degrees of freedom pose a challenge to understanding phase diagrams as a road map for material exploration. Here, the order of orbital energy level (ELO) as a physical principle of phase diagrams is introduced and demonstrated to be effective by employing La0.67Sr0.33-MnO3 (LSMO) oxides. A phase diagram of LSMO associated with the oxygen content and strain is built combining DFT calculations and experiments, in which the structural stability is closely related to ELO. We thereby find a new phase with four-fold oxygen ordering as a result of ELO evolution. More important, orbital elasticity law, describing the degree of orbital splitting, is proposed to clarify the origin of ELO evolution, with the objective of design of functional oxides with specific functionality. This work broadens the means of performance modulation in the field of materials science and opens up an opportunity for phase diagram prediction from an orbital perspective.
引用
收藏
页码:619 / 628
页数:10
相关论文
共 40 条
  • [1] Control of the metal-insulator transition in vanadium dioxide by modifying orbital occupancy
    Aetukuri, Nagaphani B.
    Gray, Alexander X.
    Drouard, Marc
    Cossale, Matteo
    Gao, Li
    Reid, Alexander H.
    Kukreja, Roopali
    Ohldag, Hendrik
    Jenkins, Catherine A.
    Arenholz, Elke
    Roche, Kevin P.
    Duerr, Hermann A.
    Samant, Mahesh G.
    Parkin, Stuart S. P.
    [J]. NATURE PHYSICS, 2013, 9 (10) : 661 - 666
  • [2] Control of Molecular Orbital Ordering Using a van der Waals Monolayer Ferroelectric
    Amini, Mohammad
    Silveira, Orlando J.
    Vano, Viliam
    Lado, Jose L.
    Foster, Adam S.
    Liljeroth, Peter
    Kezilebieke, Shawulienu
    [J]. ADVANCED MATERIALS, 2023, 35 (09)
  • [3] PROJECTOR AUGMENTED-WAVE METHOD
    BLOCHL, PE
    [J]. PHYSICAL REVIEW B, 1994, 50 (24): : 17953 - 17979
  • [4] Ferromagnetism induced by entangled charge and orbital orderings in ferroelectric titanate perovskites
    Bristowe, N. C.
    Varignon, J.
    Fontaine, D.
    Bousquet, E.
    Ghosez, Ph.
    [J]. NATURE COMMUNICATIONS, 2015, 6
  • [5] Reversible Control of Physical Properties via an Oxygen-Vacancy-Driven Topotactic Transition in Epitaxial La0.7Sr0.3MnO3-δ Thin Films
    Cao, Lei
    Petracic, Oleg
    Zakalek, Paul
    Weber, Alexander
    Ruecker, Ulrich
    Schubert, Juergen
    Koutsioubas, Alexandros
    Mattauch, Stefan
    Brueckel, Thomas
    [J]. ADVANCED MATERIALS, 2019, 31 (07)
  • [6] Phase diagram calculation: past, present and future
    Chang, YA
    Chen, SL
    Zhang, F
    Yan, XY
    Xie, FY
    Schmid-Fetzer, R
    Oates, WA
    [J]. PROGRESS IN MATERIALS SCIENCE, 2004, 49 (3-4) : 313 - 345
  • [7] Orbital Engineering in Symmetry-Breaking Polar Heterostructures
    Disa, Ankit S.
    Kumah, Divine P.
    Malashevich, Andrei
    Chen, Hanghui
    Arena, Dario A.
    Specht, Eliot D.
    Ismail-Beigi, Sohrab
    Walker, F. J.
    Ahn, Charles H.
    [J]. PHYSICAL REVIEW LETTERS, 2015, 114 (02)
  • [8] Epitaxial Oxygen Getter for a Brownmillerite Phase Transformation in Manganite Films
    Ferguson, J. D.
    Kim, Y.
    Kourkoutis, L. Fitting
    Vodnick, A.
    Woll, A. R.
    Muller, D. A.
    Brock, J. D.
    [J]. ADVANCED MATERIALS, 2011, 23 (10) : 1226 - +
  • [9] Long-ranged Cu-based order with dz2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d_{z^2}$$\end{document} orbital character at a YBa2Cu3O7/ manganite interface
    Roxana Gaina
    Christopher W. Nicholson
    Maxime Rumo
    Subhrangsu Sarkar
    Jarji Khmaladze
    Eugenio Paris
    Yi Tseng
    Wenliang Zhang
    Teguh C. Asmara
    Daniel McNally
    Cinthia Piamonteze
    Eugen Weschke
    Thorsten Schmitt
    Claude Monney
    Christian Bernhard
    [J]. npj Quantum Materials, 6 (1)
  • [10] A new phase diagram for layered antiferromagnetic films
    Hellwig, O
    Kirk, TL
    Kortright, JB
    Berger, A
    Fullerton, EE
    [J]. NATURE MATERIALS, 2003, 2 (02) : 112 - 116