The sharp bound of the third Hankel determinant of the kth-root transformation for bounded turning functions

被引:0
作者
Srivastava, Hari M. [1 ,2 ,3 ,4 ,5 ,6 ]
Rath, Biswajit [7 ]
Kumar, K. Sanjay [7 ]
Krishna, D. Vamshee [8 ]
机构
[1] Univ Victoria, Dept Math & Stat, Victoria, BC V8W 3R4, Canada
[2] China Med Univ, China Med Univ Hosp, Dept Med Res, Taichung 40402, Taiwan
[3] Kyung Hee Univ, Ctr Converging Humanities, 26 Kyungheedae Ro, Seoul 02447, South Korea
[4] Azerbaijan Univ, Dept Math & Informat, 71 Jeyhun Hajibeyli St, Baku AZ-1007, Azerbaijan
[5] Int Telematic Univ Uninettuno, Sect Math, I-00186 Rome, Italy
[6] Chung Yuan Christian Univ, Dept Appl Math, Taoyuan City 320314, Taiwan
[7] GITAM Deemed Univ, GITAM Sch Sci, Dept Math, Visakhapatnam 530045, AP, India
[8] North Eastern Hill Univ NEHU, Dept Math, Shillong 793022, Meghalaya, India
来源
ACTA ET COMMENTATIONES UNIVERSITATIS TARTUENSIS DE MATHEMATICA | 2023年 / 27卷 / 02期
关键词
Univalent function; Hankel determinant; bounded turning func-tions; kth-root transformation; Carathe'odory function; ANALYTIC-FUNCTIONS; COEFFICIENT; INVERSE; KIND;
D O I
10.12697/ACUTM.2023.27.15
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The objective of this paper is to estimate the sharp bound of the third Hankel determinant for the kth-root transformation to the class of functions whose derivative has a positive real part satisfying the normalized conditions f(0) = 0 and f'(0) = 1 in the open unit disk D := {z is an element of C : |z| < 1}.
引用
收藏
页码:185 / 210
页数:26
相关论文
共 26 条
[1]  
Ali RM, 2009, B IRAN MATH SOC, V35, P119
[2]  
Babalola KO, 2010, INEQUAL THEORY APPL, P1
[3]   THE SHARP BOUNDS OF THE SECOND AND THIRD HANKEL DETERMINANTS FOR THE CLASS SL [J].
Banga, Shagun ;
Kumar, S. Sivaprasad .
MATHEMATICA SLOVACA, 2020, 70 (04) :849-862
[4]  
Caratheodory C., 1911, Rendiconti del Circolo Matematico di Palermo, V32, P193, DOI DOI 10.1007/BF03014795
[5]  
Duren P., 1983, Grundlehren der Mathematischen Wissenschaften, V259
[6]  
Goodman AW., 1983, Univalent Functions, Vol 1 and Vol 2
[7]  
Hayami T., 2010, Int. J. Math. Anal, V4, P2573
[8]   The sharp bound of the third Hankel determinant for functions of bounded turning [J].
Kowalczyk, Bogumila ;
Lecko, Adam .
BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA, 2021, 27 (03)
[9]   THE SHARP BOUND FOR THE HANKEL DETERMINANT OF THE THIRD KIND FOR CONVEX FUNCTIONS [J].
Kowalczyk, Bogumila ;
Lecko, Adam ;
Sim, Young Jae .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2018, 97 (03) :435-445
[10]   The Sharp Bound of the Third Hankel Determinant for the Inverse of Bounded Turning Functions [J].
Kumar, Sanjay K. ;
Rath, Biswajit ;
Krishna, Vamshee D. .
CONTEMPORARY MATHEMATICS, 2023, 4 (01) :30-41