Vis-NIR Spectroscopy for Soil Organic Carbon Assessment: A Meta-Analysis

被引:12
作者
Chinilin, A. V. [1 ]
Vindeker, G. V. [1 ]
Savin, I. Yu. [1 ,2 ]
机构
[1] Dokuchaev Soil Sci Inst, Moscow 119017, Russia
[2] PeoplesFriendship Univ Russia, RUDN Univ, Ecol Fac, Moscow 115093, Russia
关键词
proximal soil sensing; prediction; algorithm; model calibration; validation; NEAR-INFRARED SPECTROSCOPY; TOTAL NITROGEN; LEAST-SQUARES; REFLECTANCE; PREDICTION; FRACTIONS; DIVERSITY; ABUNDANCE; PH;
D O I
10.1134/S1064229323601841
中图分类号
S15 [土壤学];
学科分类号
0903 ; 090301 ;
摘要
The research papers assessing the content of soil organic carbon with the help of Vis-NIR spectroscopy approaches are systematically analyzed and subject to meta-analysis. This meta-analysis included 134 studies published in 1986-2022 with a total sample of 709 values of quantitative metrics. The papers have been searched for in databases of scientific periodicals (RSCI, Science Direct, Scopus, and Google Scholar) by the key word combination "Vis-NIR spectroscopy AND soil organic carbon". The meta-analysis using the nonparametric one-sided Kruskal-Wallis variance analysis in conjunction with nonparametric pairwise method shows the presence of a statistically significant difference between the median values of the accepted quantitative metrics of the predictive power of the models, namely, coefficient of determination (R2cv/val), root mean square error (RMSE), and the ratio of performance to deviation (RPD). The best performance of the preprocessing method for spectral curves is demonstrated and the estimates of soil organic carbon content obtained by laboratory and field spectroscopies are compared.
引用
收藏
页码:1605 / 1617
页数:13
相关论文
共 50 条
[41]   Point-of-Care Using Vis-NIR Spectroscopy for White Blood Cell Count Analysis [J].
Barroso, Teresa Guerra ;
Ribeiro, Lenio ;
Gregorio, Hugo ;
Monteiro-Silva, Filipe ;
dos Santos, Filipe Neves ;
Martins, Rui Costa .
CHEMOSENSORS, 2022, 10 (11)
[42]   Soil total nitrogen inversion and interpretability analysis using vis-NIR spectroscopy and transfer learning [J].
He, Ping ;
Chen, Yu ;
Wen, Xingping ;
Zhou, Xiaohua ;
Chen, Zailin ;
Sun, Zhongchang ;
Cheng, Xianfeng .
INTERNATIONAL JOURNAL OF DIGITAL EARTH, 2025, 18 (01)
[43]   Predicting soil microplastic concentration using vis-NIR spectroscopy [J].
Corradini, Fabio ;
Bartholomeus, Harm ;
Lwanga, Esperanza Huerta ;
Gertsen, Hennie ;
Geissen, Violette .
SCIENCE OF THE TOTAL ENVIRONMENT, 2019, 650 :922-932
[44]   Estimating purple-soil moisture content using Vis-NIR spectroscopy [J].
Gou, Yu ;
Wie, Jie ;
Li, Jin-lin ;
Han, Chen ;
Tu, Qing-yan ;
Liu, Chun-hong .
JOURNAL OF MOUNTAIN SCIENCE, 2020, 17 (09) :2214-2223
[45]   Evaluation and implementation of vis-NIR spectroscopy models to determine workability [J].
Mahmood, Hafiz Sultan ;
Bartholomeus, Harm M. ;
Hoogmoed, Willem B. ;
van Henten, Eldert J. .
SOIL & TILLAGE RESEARCH, 2013, 134 :172-179
[46]   Using laboratory Vis-NIR spectroscopy for monitoring some forest soil properties [J].
Conforti, Massimo ;
Matteucci, Giorgio ;
Buttafuoco, Gabriele .
JOURNAL OF SOILS AND SEDIMENTS, 2018, 18 (03) :1009-1019
[47]   Spatial Estimation of Soil Organic Matter and Total Nitrogen by Fusing Field Vis-NIR Spectroscopy and Multispectral Remote Sensing Data [J].
Xu, Dongyun ;
Chen, Songchao ;
Zhou, Yin ;
Ji, Wenjun ;
Shi, Zhou .
REMOTE SENSING, 2025, 17 (04)
[48]   Synergistic Use of Vis-NIR, MIR, and XRF Spectroscopy for the Determination of Soil Geochemistry [J].
O'Rourke, S. M. ;
Minasny, B. ;
Holden, N. M. ;
McBratney, A. B. .
SOIL SCIENCE SOCIETY OF AMERICA JOURNAL, 2016, 80 (04) :888-899
[49]   Development of a soil fertility index using on-line Vis-NIR spectroscopy [J].
Munnaf, Muhammad Abdul ;
Mouazen, Abdul Mounem .
COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2021, 188
[50]   Application of Vis-NIR spectroscopy for determination the content of organic matter in saline-alkali soils [J].
Ba, Yuling ;
Liu, Jinbao ;
Han, Jichang ;
Zhang, Xingchang .
SPECTROCHIMICA ACTA PART A-MOLECULAR AND BIOMOLECULAR SPECTROSCOPY, 2020, 229