Vis-NIR Spectroscopy for Soil Organic Carbon Assessment: A Meta-Analysis

被引:12
作者
Chinilin, A. V. [1 ]
Vindeker, G. V. [1 ]
Savin, I. Yu. [1 ,2 ]
机构
[1] Dokuchaev Soil Sci Inst, Moscow 119017, Russia
[2] PeoplesFriendship Univ Russia, RUDN Univ, Ecol Fac, Moscow 115093, Russia
关键词
proximal soil sensing; prediction; algorithm; model calibration; validation; NEAR-INFRARED SPECTROSCOPY; TOTAL NITROGEN; LEAST-SQUARES; REFLECTANCE; PREDICTION; FRACTIONS; DIVERSITY; ABUNDANCE; PH;
D O I
10.1134/S1064229323601841
中图分类号
S15 [土壤学];
学科分类号
0903 ; 090301 ;
摘要
The research papers assessing the content of soil organic carbon with the help of Vis-NIR spectroscopy approaches are systematically analyzed and subject to meta-analysis. This meta-analysis included 134 studies published in 1986-2022 with a total sample of 709 values of quantitative metrics. The papers have been searched for in databases of scientific periodicals (RSCI, Science Direct, Scopus, and Google Scholar) by the key word combination "Vis-NIR spectroscopy AND soil organic carbon". The meta-analysis using the nonparametric one-sided Kruskal-Wallis variance analysis in conjunction with nonparametric pairwise method shows the presence of a statistically significant difference between the median values of the accepted quantitative metrics of the predictive power of the models, namely, coefficient of determination (R2cv/val), root mean square error (RMSE), and the ratio of performance to deviation (RPD). The best performance of the preprocessing method for spectral curves is demonstrated and the estimates of soil organic carbon content obtained by laboratory and field spectroscopies are compared.
引用
收藏
页码:1605 / 1617
页数:13
相关论文
共 50 条
[31]   Combining Vis-NIR spectroscopy and advanced statistical analysis for estimation of soil chemical properties relevant for forest road construction [J].
Mousavi, Fatemeh ;
Abdi, Ehsan ;
Knadel, Maria ;
Tuller, Markus ;
Ghalandarzadeh, Abbas ;
Bahrami, Hossein Ali ;
Majnounian, Baris .
SOIL SCIENCE SOCIETY OF AMERICA JOURNAL, 2021, 85 (04) :1073-1090
[32]   Feasibility Analysis of Rapid Estimation of Soil Erosion Factor Using Vis-NIR Spectroscopy [J].
Yu Wu ;
Jia Xiao-lin ;
Chen Song-chao ;
Zhou Lian-qing ;
Shi Zhou .
SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38 (04) :1076-1081
[33]   Estimation of soil organic carbon in LUCAS soil database using Vis-NIR spectroscopy based on hybrid kernel Gaussian process regression [J].
Liu, Baoyang ;
Guo, Baofeng ;
Zhuo, Renxiong ;
Dai, Fan .
SPECTROCHIMICA ACTA PART A-MOLECULAR AND BIOMOLECULAR SPECTROSCOPY, 2024, 321
[34]   Rapid assessment of soil water repellency indices using Vis-NIR spectroscopy and pedo-transfer functions [J].
Davari, Masoud ;
Fahmideh, Soheyla ;
Mosaddeghi, Mohammad Reza .
GEODERMA, 2022, 406
[35]   Estimation of Soil Organic Carbon Content in Coastal Wetlands with Measured VIS-NIR Spectroscopy Using Optimized Support Vector Machines and Random Forests [J].
Song, Jingru ;
Gao, Junhai ;
Zhang, Yongbin ;
Li, Fuping ;
Man, Weidong ;
Liu, Mingyue ;
Wang, Jinhua ;
Li, Mengqian ;
Zheng, Hao ;
Yang, Xiaowu ;
Li, Chunjing .
REMOTE SENSING, 2022, 14 (17)
[36]   Strategies for the efficient estimation of soil organic carbon at the field scale with vis-NIR spectroscopy: Spectral libraries and spiking vs. local calibrations [J].
Seidel, Michael ;
Hutengs, Christopher ;
Ludwig, Bernard ;
Thiele-Bruhn, Soeren ;
Vohland, Michael .
GEODERMA, 2019, 354
[37]   Transferability of Vis-NIR models for Soil Organic Carbon Estimation between Two Study Areas by using Spiking [J].
Hong, Yongsheng ;
Chen, Yiyun ;
Zhang, Yong ;
Liu, Yanfang ;
Liu, Yaolin ;
Yu, Lei ;
Liu, Yi ;
Cheng, Hang .
SOIL SCIENCE SOCIETY OF AMERICA JOURNAL, 2018, 82 (05) :1231-1242
[38]   Classification of arsenic contamination in soil across the EU by vis-NIR spectroscopy and machine learning [J].
Hu, Tao ;
Qi, Chongchong ;
Wu, Mengting ;
Rennert, Thilo ;
Chen, Qiusong ;
Chai, Liyuan ;
Lin, Zhang .
INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2024, 134
[39]   Evaluation of spectral data based soil organic carbon content estimation models in VIS-NIR [J].
Nagy, Attila ;
Szabo, Andrea ;
Escobar, Diana Quintin ;
Tamas, Janos .
SOIL SCIENCE ANNUAL, 2024, 75 (01)
[40]   Evaluation of data pre-processing and regression models for precise estimation of soil organic carbon using Vis-NIR spectroscopy [J].
Wang, Yaxin ;
Yang, Sha ;
Yan, Xiaobin ;
Yang, Chenbo ;
Feng, Meichen ;
Xiao, Lujie ;
Song, Xiaoyan ;
Zhang, Meijun ;
Shafiq, Fahad ;
Sun, Hui ;
Li, Guangxin ;
Yang, Wude ;
Wang, Chao .
JOURNAL OF SOILS AND SEDIMENTS, 2023, 23 (02) :634-645