Vis-NIR Spectroscopy for Soil Organic Carbon Assessment: A Meta-Analysis

被引:12
作者
Chinilin, A. V. [1 ]
Vindeker, G. V. [1 ]
Savin, I. Yu. [1 ,2 ]
机构
[1] Dokuchaev Soil Sci Inst, Moscow 119017, Russia
[2] PeoplesFriendship Univ Russia, RUDN Univ, Ecol Fac, Moscow 115093, Russia
关键词
proximal soil sensing; prediction; algorithm; model calibration; validation; NEAR-INFRARED SPECTROSCOPY; TOTAL NITROGEN; LEAST-SQUARES; REFLECTANCE; PREDICTION; FRACTIONS; DIVERSITY; ABUNDANCE; PH;
D O I
10.1134/S1064229323601841
中图分类号
S15 [土壤学];
学科分类号
0903 ; 090301 ;
摘要
The research papers assessing the content of soil organic carbon with the help of Vis-NIR spectroscopy approaches are systematically analyzed and subject to meta-analysis. This meta-analysis included 134 studies published in 1986-2022 with a total sample of 709 values of quantitative metrics. The papers have been searched for in databases of scientific periodicals (RSCI, Science Direct, Scopus, and Google Scholar) by the key word combination "Vis-NIR spectroscopy AND soil organic carbon". The meta-analysis using the nonparametric one-sided Kruskal-Wallis variance analysis in conjunction with nonparametric pairwise method shows the presence of a statistically significant difference between the median values of the accepted quantitative metrics of the predictive power of the models, namely, coefficient of determination (R2cv/val), root mean square error (RMSE), and the ratio of performance to deviation (RPD). The best performance of the preprocessing method for spectral curves is demonstrated and the estimates of soil organic carbon content obtained by laboratory and field spectroscopies are compared.
引用
收藏
页码:1605 / 1617
页数:13
相关论文
共 50 条
[21]   Assessment of important soil properties related to Chinese Soil Taxonomy based on vis-NIR reflectance spectroscopy [J].
Xu, Dongyun ;
Ma, Wanzhu ;
Chen, Songchao ;
Jiang, Qingsong ;
He, Kang ;
Shi, Zhou .
COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2018, 144 :1-8
[22]   Advancing Soil Organic Carbon and Total Nitrogen Modelling in Peatlands: The Impact of Environmental Variable Resolution and vis-NIR Spectroscopy Integration [J].
Mendes, Wanderson de Sousa ;
Sommer, Michael .
AGRONOMY-BASEL, 2023, 13 (07)
[23]   Estimating soil organic carbon density in Northern China's agro-pastoral ecotone using vis-NIR spectroscopy [J].
Chen, Yun ;
Li, Yuqiang ;
Wang, Xuyang ;
Wan, Jinliang ;
Gong, Xiangwen ;
Niu, Yayi ;
Liu, Jing .
JOURNAL OF SOILS AND SEDIMENTS, 2020, 20 (10) :3698-3711
[24]   Towards on-the-go field assessment of soil organic carbon using Vis-NIR diffuse reflectance spectroscopy: Developing and testing a novel tractor-driven measuring chamber [J].
Rodionov, Andrei ;
Welp, Gerhard ;
Damerow, Lutz ;
Berg, Toni ;
Amelung, Wulf ;
Paetzold, Stefan .
SOIL & TILLAGE RESEARCH, 2015, 145 :93-102
[25]   Development of a Danish national Vis-NIR soil spectral library for soil organic carbon determination [J].
Knadel, M. ;
Deng, F. ;
Thomsen, A. ;
Greve, M. H. .
DIGITAL SOIL ASSESSMENTS AND BEYOND, 2012, :403-408
[26]   Evaluating the Precision and Accuracy of Proximal Soil vis-NIR Sensors for Estimating Soil Organic Matter and Texture [J].
Dhawale, Nandkishor M. ;
Adamchuk, Viacheslav I. ;
Prasher, Shiv O. ;
Viscarra Rossel, Raphael A. .
SOIL SYSTEMS, 2021, 5 (03)
[27]   The Influence of Spectral Pretreatment on the Selection of Representative Calibration Samples for Soil Organic Matter Estimation Using Vis-NIR Reflectance Spectroscopy [J].
Liu, Yi ;
Liu, Yaolin ;
Chen, Yiyun ;
Zhang, Yang ;
Shi, Tiezhu ;
Wang, Junjie ;
Hong, Yongsheng ;
Fei, Teng ;
Zhang, Yang .
REMOTE SENSING, 2019, 11 (04)
[28]   Machine learning based prediction of soil total nitrogen, organic carbon and moisture content by using VIS-NIR spectroscopy [J].
Morellos, Antonios ;
Pantazi, Xanthoula-Eirini ;
Moshou, Dimitrios ;
Alexandridis, Thomas ;
Whetton, Rebecca ;
Tziotzios, Georgios ;
Wiebensohn, Jens ;
Bill, Ralf ;
Mouazen, Abdul M. .
BIOSYSTEMS ENGINEERING, 2016, 152 :104-116
[29]   Estimation of soil organic carbon content by Vis-NIR spectroscopy combining feature selection algorithm and local regression method [J].
Liu, Baoyang ;
Guo, Baofeng ;
Zhuo, Renxiong ;
Dai, Fan .
REVISTA BRASILEIRA DE CIENCIA DO SOLO, 2023, 47
[30]   Proximal field Vis-NIR spectroscopy of soil organic carbon: A solution to clear obstacles related to vegetation and straw cover [J].
Rodionov, Andrei ;
Paetzold, Stefan ;
Welp, Gerhard ;
Pude, Ralf ;
Amelung, Wulf .
SOIL & TILLAGE RESEARCH, 2016, 163 :89-98