Bubble decomposition for the harmonic map heat flow in the equivariant case

被引:3
作者
Jendrej, Jacek [1 ,2 ]
Lawrie, Andrew [3 ]
机构
[1] Univ Sorbonne Paris Nord, CNRS, 99 Av Jean Baptiste Clement, F-93430 Villetaneuse, France
[2] Univ Sorbonne Paris Nord, LAGA, 99 Av Jean Baptiste Clement, F-93430 Villetaneuse, France
[3] MIT, Dept Math, 77 Massachusetts Ave,2-267, Cambridge, MA 02139 USA
基金
美国国家科学基金会;
关键词
Primary; 35L71; 35B40; 37K40; TIME BLOW-UP; WAVE; DYNAMICS;
D O I
10.1007/s00526-023-02597-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the harmonic map heat flow for maps R2 -> S2, under equivariant symmetry. It is known that solutions to the initial value problem can exhibit bubbling along a sequence of times-the solution decouples into a superposition of harmonic maps concentrating at different scales and a body map that accounts for the rest of the energy. We prove that this bubble decomposition is unique and occurs continuously in time. The main new ingredient in the proof is the notion of a collision interval from Jendrej and Lawrie (J Amer Math Soc).
引用
收藏
页数:36
相关论文
共 34 条
[1]   High frequency approximation of solutions to critical nonlinear wave equations [J].
Bahouri, H ;
Gérard, P .
AMERICAN JOURNAL OF MATHEMATICS, 1999, 121 (01) :131-175
[2]   ENERGY CONCENTRATION FOR 2-DIMENSIONAL RADIALLY SYMMETRIC EQUIVARIANT HARMONIC MAP HEAT FLOWS [J].
Bertsch, Michiel ;
Van der Hout, Rein ;
Hulshof, Josephus .
COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2011, 13 (04) :675-695
[3]   CONVERGENCE OF SOLUTIONS OF H-SYSTEMS OR HOW TO BLOW BUBBLES [J].
BREZIS, H ;
CORON, JM .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1985, 89 (01) :21-56
[4]  
CHANG KC, 1992, J DIFFER GEOM, V36, P507, DOI 10.4310/jdg/1214448751
[5]  
CORON JM, 1989, CR ACAD SCI I-MATH, V308, P339
[6]   On the Soliton Resolution for Equivariant Wave Maps to the Sphere [J].
Cote, R. .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2015, 68 (11) :1946-2004
[7]  
Davila J, 2020, INVENT MATH, V219, P345, DOI 10.1007/s00222-019-00908-y
[8]   EXISTENCE AND STABILITY OF INFINITE TIME BUBBLE TOWERS IN THE ENERGY CRITICAL HEAT EQUATION [J].
Del Pino, Manuel ;
Musso, Monica ;
Wei, Juncheng .
ANALYSIS & PDE, 2021, 14 (05) :1557-1598
[9]  
Ding W., 1996, COMMUN ANAL GEOM, V3, P543, DOI [10.4310/CAG.1995.v3.n4.a1, DOI 10.4310/CAG.1995.V3.N4.A1]
[10]   Profiles of bounded radial solutions of the focusing, energy-critical wave equation [J].
Duyckaerts, Thomas ;
Kenig, Carlos ;
Merle, Frank .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 2012, 22 (03) :639-698