scAAGA: Single cell data analysis framework using asymmetric autoencoder with gene attention

被引:64
|
作者
Meng, Rui [1 ]
Yin, Shuaidong [1 ]
Sun, Jianqiang [2 ]
Hu, Huan [3 ]
Zhao, Qi [1 ]
机构
[1] Univ Sci & Technol Liaoning, Sch Comp Sci & Software Engn, Anshan 114051, Peoples R China
[2] Linyi Univ, Sch Informat Sci & Engn, Linyi 276000, Peoples R China
[3] Fuzhou Univ, Inst Appl Genom, Fuzhou 350108, Peoples R China
基金
中国国家自然科学基金;
关键词
scRNA-seq; Deep learning; Gene attention; Data augmentation; COVID-19; RNA;
D O I
10.1016/j.compbiomed.2023.107414
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
In recent years, single-cell RNA sequencing (scRNA-seq) has emerged as a powerful technique for investigating cellular heterogeneity and structure. However, analyzing scRNA-seq data remains challenging, especially in the context of COVID-19 research. Single-cell clustering is a key step in analyzing scRNA-seq data, and deep learning methods have shown great potential in this area. In this work, we propose a novel scRNA-seq analysis framework called scAAGA. Specifically, we utilize an asymmetric autoencoder with a gene attention module to learn important gene features adaptively from scRNA-seq data, with the aim of improving the clustering effect. We apply scAAGA to COVID19 peripheral blood mononuclear cell (PBMC) scRNA-seq data and compare its performance with state-of-the-art methods. Our results consistently demonstrate that scAAGA outperforms existing methods in terms of adjusted rand index (ARI), normalized mutual information (NMI), and adjusted mutual information (AMI) scores, achieving improvements ranging from 2.8% to 27.8% in NMI scores. Additionally, we discuss a data augmentation technology to expand the datasets and improve the accuracy of scAAGA. Overall, scAAGA presents a robust tool for scRNA-seq data analysis, enhancing the accuracy and reliability of clustering results in COVID-19 research.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] DeepComp: A Hybrid Framework for Data Compression Using Attention Coupled Autoencoder
    S. Sriram
    Arun K. Dwivedi
    P. Chitra
    V. Vijay Sankar
    S. Abirami
    S. J. Rethina Durai
    Divya Pandey
    Manoj K. Khare
    Arabian Journal for Science and Engineering, 2022, 47 : 10395 - 10410
  • [2] DeepComp: A Hybrid Framework for Data Compression Using Attention Coupled Autoencoder
    Sriram, S.
    Dwivedi, Arun K.
    Chitra, P.
    Sankar, V. Vijay
    Abirami, S.
    Durai, S. J. Rethina
    Pandey, Divya
    Khare, Manoj K.
    ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2022, 47 (08) : 10395 - 10410
  • [3] Low-loss data compression using deep learning framework with attention-based autoencoder
    Sriram, S.
    Chitra, P.
    Sankar, V. Vijay
    Abirami, S.
    Durai, S. J. Rethina
    INTERNATIONAL JOURNAL OF COMPUTATIONAL SCIENCE AND ENGINEERING, 2023, 26 (01) : 90 - 100
  • [4] Semisupervised Generative Autoencoder for Single-Cell Data
    Trung Ngo Trong
    Mehtonen, Juha
    Gonzalez, Gerardo
    Kramer, Roger
    Hautamaki, Ville
    Heinaniemi, Merja
    JOURNAL OF COMPUTATIONAL BIOLOGY, 2020, 27 (08) : 1190 - 1203
  • [5] Imputation of single-cell gene expression with an autoencoder neural network
    Badsha, Md Bahadur
    Li, Rui
    Liu, Boxiang
    Li, Yang, I
    Xian, Min
    Banovich, Nicholas E.
    Fu, Audrey Qiuyan
    QUANTITATIVE BIOLOGY, 2020, 8 (01) : 78 - 94
  • [6] Autoencoder-based cluster ensembles for single-cell RNA-seq data analysis
    Thomas A. Geddes
    Taiyun Kim
    Lihao Nan
    James G. Burchfield
    Jean Y. H. Yang
    Dacheng Tao
    Pengyi Yang
    BMC Bioinformatics, 20
  • [7] Autoencoder-based cluster ensembles for single-cell RNA-seq data analysis
    Geddes, Thomas A.
    Kim, Taiyun
    Nan, Lihao
    Burchfield, James G.
    Yang, Jean Y. H.
    Tao, Dacheng
    Yang, Pengyi
    BMC BIOINFORMATICS, 2019, 20 (01)
  • [8] scAuto as a comprehensive framework for single-cell chromatin accessibility data analysis
    Gong M.
    Yu Y.
    Wang Z.
    Zhang J.
    Wang X.
    Fu C.
    Zhang Y.
    Wang X.
    Computers in Biology and Medicine, 2024, 171
  • [9] RDAClone: Deciphering Tumor Heterozygosity through Single-Cell Genomics Data Analysis with Robust Deep Autoencoder
    Xia, Jie
    Wang, Lequn
    Zhang, Guijun
    Zuo, Chunman
    Chen, Luonan
    GENES, 2021, 12 (12)
  • [10] Comparison Analysis of Data Augmentation using Bootstrap, GANs and Autoencoder
    Nakhwan, Mukrin
    Duangsoithong, Rakkrit
    2022-14TH INTERNATIONAL CONFERENCE ON KNOWLEDGE AND SMART TECHNOLOGY (KST 2022), 2022, : 18 - 23