Experimental Performance Evaluation of a Hybrid Parabolic Solar Lighting System for Use in Agricultural Environments

被引:0
作者
Karimi Yayshahri, Ehsan [1 ]
Gorjian, Shiva [1 ,2 ]
Minaei, Saeid [1 ]
机构
[1] Tarbiat Modares Univ TMU, Fac Agr, Biosyst Engn Dept, Tehran 1411713116, Iran
[2] Tarbiat Modares Univ TMU, Fac Interdisciplinary Sci & Technol, Renewable Energy Dept, POB 14115-111, Tehran, Iran
关键词
indoor farming; optical fibers; parabolic concentrators; solar lighting; DAYLIGHTING SYSTEM; DESIGN; CULTIVATION; GREENHOUSE; SUNLIGHT;
D O I
10.1002/ente.202300546
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
As a result, the industry is actively working to reduce its energy footprint and promote a more sustainable approach to agricultural lighting. This study presents a solar lighting system designed for indoor farming to provide natural light. The proposed system uses a parabolic dish concentrator integrating with polymethyl methacrylate optical fibers to direct concentrated light into a desired place. A water cooling mechanism is also used to prevent heat transmission to the optical fibers. The indoor sunlight's distribution is studied using a designed darkroom. The evaluation is carried out in 7 days, from November 23 to 29, from 8 a.m. to 4 p.m., to ensure the stability of the system under various weather conditions. The results of the experiments show that the receiver's temperature can remain at 63 & DEG;C on sunny days under a clear sky, even when the maximum value of solar radiation is about 982 W m-2 with the highest air temperature of 19 & DEG;C. During the experiments, the solar illuminance ranges from a maximum of 118,821.85 lx to a minimum value of 374.9.6 lx. The overall optical efficiency of the system, considering optical components, ranges from 31% to 32% under various outdoor illuminance levels. Overall, it is confirmed that the developed solar lighting system offers a applicable method to naturally illuminate protected agricultural environments, enhancing the quality of the growing crops. Energy consumption for lighting has become significant in agriculture due to the growing use of artificial lighting. A solar lighting system for indoor farming is presented, using a parabolic dish concentrator and optical fibers to direct concentrated sunlight. Results show stable system performance and sufficient illuminance for growth environments, primarily influenced by solar radiation and incoming illuminance.image & COPY; 2023 WILEY-VCH GmbH
引用
收藏
页数:17
相关论文
共 50 条
  • [41] A review on performance evaluation of solar dryer and its material for drying agricultural products
    Nukulwar, Masnaji R.
    Tungikar, Vinod B.
    MATERIALS TODAY-PROCEEDINGS, 2021, 46 : 345 - 349
  • [42] Experimental investigation of a parabolic trough collector-thermoelectric generator (PTC-TEG) hybrid solar system with a pressurized heat transfer fluid
    Gharzi, Mostafa
    Kermani, Ali M.
    Shamsabadi, Hosseinali Tash
    RENEWABLE ENERGY, 2023, 202 : 270 - 279
  • [43] Effect of switching scheme on the performance of a hybrid solar PV system
    Hsu, Po-Chien
    Huang, Bin-Juine
    Lin, Wei-Chivan
    Chang, Yu-Jen
    Chang, Cheng-Jui
    Li, Kang
    Lee, Kung-Yen
    RENEWABLE ENERGY, 2016, 96 : 520 - 530
  • [44] Performance study of a concentrated photovoltaic thermal hybrid solar system
    Riahi, Afifa
    Ali, Abdessalem Ben Haj
    Guizani, Amenallah
    Balghouthi, Moncef
    2019 10TH INTERNATIONAL RENEWABLE ENERGY CONGRESS (IREC), 2019,
  • [45] Experimental energy and exergy performance of a solar receiver for a domestic parabolic dish concentrator for teaching purposes
    Mawire, Ashmore
    Taole, Simeon H.
    ENERGY FOR SUSTAINABLE DEVELOPMENT, 2014, 19 : 162 - 169
  • [46] Experimental evaluation of a stationary parabolic trough solar collector: Influence of the concentrator and heat transfer fluid
    Barbosa, Eloiny Guimaraes
    Martins, Marcio Aredes
    Viana de Araujo, Marcos Eduardo
    Renato, Natalia dos Santos
    Zolnier, Sergio
    Pereira, Emanuele Graciosa
    Resende, Michael de Oliveira
    JOURNAL OF CLEANER PRODUCTION, 2020, 276 (276)
  • [47] Thermal Performance Analysis of an Absorption Cooling System Based on Parabolic Trough Solar Collectors
    Wang, Jiangjiang
    Yan, Rujing
    Wang, Zhuang
    Zhang, Xutao
    Shi, Guohua
    ENERGIES, 2018, 11 (10)
  • [48] Experimental and theoretical investigation on a hybrid LCPV/T solar still system
    Guo Xinxin
    Zhang Heng
    Chen Haiping
    Liang Kai
    Huang Jiguang
    Liu Haowen
    DESALINATION, 2019, 468
  • [49] Experimental study of a hybrid solar thermoelectric generator energy conversion system
    Escobar, Paulina V.
    Oyarzun, Diego I.
    Arias, Andrea
    Guzman, Amador M.
    ENERGY CONVERSION AND MANAGEMENT, 2021, 238
  • [50] Numerical and experimental performance evaluation of a laser-concentrated photovoltaic-thermoelectric generator hybrid system
    Li, Yuemei
    Zhang, Zhiguo
    Zhang, Haojie
    Xiao, Ziyang
    Li Luming
    Jiang, Peng
    OPTICS EXPRESS, 2022, 30 (11) : 19465 - 19478