共 50 条
Experimental Performance Evaluation of a Hybrid Parabolic Solar Lighting System for Use in Agricultural Environments
被引:0
作者:
Karimi Yayshahri, Ehsan
[1
]
Gorjian, Shiva
[1
,2
]
Minaei, Saeid
[1
]
机构:
[1] Tarbiat Modares Univ TMU, Fac Agr, Biosyst Engn Dept, Tehran 1411713116, Iran
[2] Tarbiat Modares Univ TMU, Fac Interdisciplinary Sci & Technol, Renewable Energy Dept, POB 14115-111, Tehran, Iran
关键词:
indoor farming;
optical fibers;
parabolic concentrators;
solar lighting;
DAYLIGHTING SYSTEM;
DESIGN;
CULTIVATION;
GREENHOUSE;
SUNLIGHT;
D O I:
10.1002/ente.202300546
中图分类号:
TE [石油、天然气工业];
TK [能源与动力工程];
学科分类号:
0807 ;
0820 ;
摘要:
As a result, the industry is actively working to reduce its energy footprint and promote a more sustainable approach to agricultural lighting. This study presents a solar lighting system designed for indoor farming to provide natural light. The proposed system uses a parabolic dish concentrator integrating with polymethyl methacrylate optical fibers to direct concentrated light into a desired place. A water cooling mechanism is also used to prevent heat transmission to the optical fibers. The indoor sunlight's distribution is studied using a designed darkroom. The evaluation is carried out in 7 days, from November 23 to 29, from 8 a.m. to 4 p.m., to ensure the stability of the system under various weather conditions. The results of the experiments show that the receiver's temperature can remain at 63 & DEG;C on sunny days under a clear sky, even when the maximum value of solar radiation is about 982 W m-2 with the highest air temperature of 19 & DEG;C. During the experiments, the solar illuminance ranges from a maximum of 118,821.85 lx to a minimum value of 374.9.6 lx. The overall optical efficiency of the system, considering optical components, ranges from 31% to 32% under various outdoor illuminance levels. Overall, it is confirmed that the developed solar lighting system offers a applicable method to naturally illuminate protected agricultural environments, enhancing the quality of the growing crops. Energy consumption for lighting has become significant in agriculture due to the growing use of artificial lighting. A solar lighting system for indoor farming is presented, using a parabolic dish concentrator and optical fibers to direct concentrated sunlight. Results show stable system performance and sufficient illuminance for growth environments, primarily influenced by solar radiation and incoming illuminance.image & COPY; 2023 WILEY-VCH GmbH
引用
收藏
页数:17
相关论文
共 50 条