Ferroelectric Domain Wall Memory and Logic

被引:9
作者
Sun, Jie [1 ]
Jiang, An-Quan [1 ]
Sharma, Pankaj [2 ,3 ,4 ]
机构
[1] Fudan Univ, Sch Microelect, State Key Lab ASIC & Syst, Shanghai 200433, Peoples R China
[2] Flinders Univ S Australia, Coll Sci & Engn, Adelaide, SA 5042, Australia
[3] Flinders Univ S Australia, Flinders Inst Nanoscale Sci & Technol, Adelaide, SA 5042, Australia
[4] UNSW Australia, ARC Ctr Excellence Future Low Energy Elect Technol, Sydney, NSW 2052, Australia
关键词
topological nanostructures; in-memory computing; agile electronics; domain walls; memristors; POLARIZATION RETENTION; MAJORITY GATE; CONDUCTION; DEPENDENCE; BOUNDARIES; PROPOSAL; DEVICE; FILMS;
D O I
10.1021/acsaelm.3c00928
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Powered by big data and artificial intelligence, data-centricinnovationsare bringing about transformative societal changes and are expectedto continue to meteorically rise for the foreseeable future, necessitatingan accelerated development of alternative miniatured electronics andcomputing, which surmount the traditional latency and energy issuesof von Neumann computing. One such highly attractive avenue involvesthe exploration of electrically programmable topological nanostructures,such as domain walls in ferroelectrics the atomically abruptnanoscale interfaces. The ferroelectric domain walls are agile andresponsive to external stimuli. This allows selective control overtheir position, conformation, and functionality, which is ultimatelythe key to realizing low-energy memory and computing structures. Thistopical article examines the technological applications of ferroelectricdomain walls for high-density information storage, logic, and computingapplications and offers insights into potential future developmentsincluding challenges and opportunities.
引用
收藏
页码:4692 / 4703
页数:12
相关论文
共 165 条
[1]   Magnetic domain-wall logic [J].
Allwood, DA ;
Xiong, G ;
Faulkner, CC ;
Atkinson, D ;
Petit, D ;
Cowburn, RP .
SCIENCE, 2005, 309 (5741) :1688-1692
[2]   Submicrometer ferromagnetic NOT gate and shift register [J].
Allwood, DA ;
Xiong, G ;
Cooke, MD ;
Faulkner, CC ;
Atkinson, D ;
Vernier, N ;
Cowburn, RP .
SCIENCE, 2002, 296 (5575) :2003-2006
[3]   Beyond von Neumann [J].
不详 .
NATURE NANOTECHNOLOGY, 2020, 15 (07) :507-507
[4]  
[Anonymous], 2017, P INT S HIGH PERF CO
[5]   In-Plane Ferroelectric Domain Wall Memory with Embedded Electrodes on LiNbO3 Thin Films [J].
Ao, Meng Han ;
Zheng, Si Zheng ;
Zhong, Qi Lan ;
Zhang, Wen Di ;
Hou, Xu ;
Chai, Xiao Jie ;
Wang, Chao ;
Fan, Hao Chen ;
Lian, Jian Wei ;
Cheng, Yan ;
Wang, Jie ;
Jiang, Jun ;
Jiang, An Quan .
ACS APPLIED MATERIALS & INTERFACES, 2021, 13 (28) :33291-33299
[6]   Nanometer-sized etching of lithium niobate domain wall devices [J].
Ao, Menghan ;
Li, Yiming ;
Zhong, Qilan ;
Cheng, Yan ;
Jiang, An Quan .
CERAMICS INTERNATIONAL, 2023, 49 (04) :6190-6198
[7]   Hierarchical Domain Structure and Extremely Large Wall Current in Epitaxial BiFeO3 Thin Films [J].
Bai, Zi Long ;
Cheng, Xiao Xing ;
Chen, Dong Fang ;
Zhang, David Wei ;
Chen, Long-Qing ;
Scott, James F. ;
Hwang, Cheol Seong ;
Jiang, An Quan .
ADVANCED FUNCTIONAL MATERIALS, 2018, 28 (31)
[8]   Ferroelectric Domain Wall Motion in Freestanding Single-Crystal Complex Oxide Thin Film [J].
Bakaul, Saidur R. ;
Kim, Jaegyu ;
Hong, Seungbum ;
Cherukara, Mathew J. ;
Zhou, Tao ;
Stan, Liliana ;
Serrao, Claudy R. ;
Salahuddin, Sayeef ;
Petford-Long, Amanda K. ;
Fong, Dillon D. ;
Holt, Martin, V .
ADVANCED MATERIALS, 2020, 32 (04)
[9]   Enhanced electric conductivity at ferroelectric vortex cores in BiFeO3 [J].
Balke, Nina ;
Winchester, Benjamin ;
Ren, Wei ;
Chu, Ying Hao ;
Morozovska, Anna N. ;
Eliseev, Eugene A. ;
Huijben, Mark ;
Vasudevan, Rama K. ;
Maksymovych, Petro ;
Britson, Jason ;
Jesse, Stephen ;
Kornev, Igor ;
Ramesh, Ramamoorthy ;
Bellaiche, Laurent ;
Chen, Long Qing ;
Kalinin, Sergei V. .
NATURE PHYSICS, 2012, 8 (01) :81-88
[10]  
Behin-Aein B, 2010, NAT NANOTECHNOL, V5, P266, DOI [10.1038/NNANO.2010.31, 10.1038/nnano.2010.31]