Extended suprametric spaces and Stone-type theorem

被引:12
作者
Panda, Sumati Kumari [1 ]
Agarwal, Ravi P. [2 ]
Karapinar, Erdal [3 ,4 ]
机构
[1] GMR Inst Technol, Dept Math, Rajam 532127, Andhra Pradesh, India
[2] Texas A&M Univ Kingsville, Dept Math, 700 Univ Blvd,MSC 172 Kingsville, Kingsville, TX 78363 USA
[3] China Med Univ, China Med Univ Hosp, Dept Med Res, Taichung 40402, Taiwan
[4] Cankaya Univ, Dept Math, TR-06790 Ankara, Turkiye
来源
AIMS MATHEMATICS | 2023年 / 8卷 / 10期
关键词
an extended suprametric space; metrization; fixed point and Ito-Doob type stochastic integral equations;
D O I
10.3934/math.20231179
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Extended suprametric spaces are defined, and the contraction principle is established using elementary properties of the greatest lower bound instead of the usual iteration procedure. Thereafter, some topological results and the Stone-type theorem are derived in terms of suprametric spaces. Also, we have shown that every suprametric space is metrizable. Further, we prove the existence of a solution of Ito-Doob type stochastic integral equations using our main fixed point theorem in extended suprametric spaces.
引用
收藏
页码:23183 / 23199
页数:17
相关论文
共 22 条
[1]   Solutions of boundary value problems on extended-Branciari b-distance [J].
Abdeljawad, Thabet ;
Karapinar, Erdal ;
Panda, Sumati Kumari ;
Mlaiki, Nabil .
JOURNAL OF INEQUALITIES AND APPLICATIONS, 2020, 2020 (01)
[2]  
Bakhtin I.A., 1989, Functional Analysis., Gos. Ped. Inst., V30, P26, DOI DOI 10.1039/AP9892600037
[4]   METRIZATION OF TOPOLOGICAL SPACES [J].
BING, RH .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1951, 3 (02) :175-186
[5]  
Bourbaki N., 1974, TOPOLOGIE GEN
[6]  
Branciari A, 2000, PUBL MATH-DEBRECEN, V57, P31
[7]   CRITERIA FOR METRIZABILITY [J].
COLLINS, PJ ;
ROSCOE, AW .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1984, 90 (04) :631-640
[8]  
Czerwik S., 1993, Acta Math. Inform. Univ. Ostrav, V1, P5
[9]  
Engelking R., 1988, SIGMA SERIES PURE MA
[10]  
Frechet M., 1906, REND CIRC MAT PALERM, V22, P1, DOI DOI 10.1007/BF03018603