Realization and Control of Bulk and Surface Modes in 3D Nanomagnonic Networks by Additive Manufacturing of Ferromagnets

被引:6
作者
Guo, Huixin [1 ]
Deenen, Axel J. M. [1 ]
Xu, Mingran [1 ]
Hamdi, Mohammad [1 ]
Grundler, Dirk [1 ,2 ]
机构
[1] Ecole Polytech Fed Lausanne EPFL, Inst Mat, Sch Engn, Lab Nanoscale Magnet Mat & Magnon, CH-1015 Lausanne, Switzerland
[2] Ecole Polytech Fed Lausanne, Inst Elect & Micro Engn, Sch Engn, CH-1015 Lausanne, Switzerland
关键词
3D magnonic crystals; additive manufacturing; atomic layer deposition; magnetic nanonetworks; Ni;
D O I
10.1002/adma.202303292
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The high-density integration in information technology fuels the research on functional 3D nanodevices. Particularly ferromagnets promise multifunctional 3D devices for nonvolatile data storage, high-speed data processing, and non-charge-based logic operations via spintronics and magnonics concepts. However, 3D nanofabrication of ferromagnets is extremely challenging. In this work, an additive manufacturing methodology is reported, and unprecedented 3D ferromagnetic nanonetworks with a woodpile-structure unit cell are fabricated. The collective spin dynamics (magnons) at frequencies up to 25 GHz are investigated by Brillouin Light Scattering (BLS) microscopy and micromagnetic simulations. A clear discrepancy of about 10 GHz is found between the bulk and surface modes, which are engineered by different unit cell sizes in the Ni-based nanonetworks. The angle- and spatially-dependent modes demonstrate opportunities for multi-frequency signal processing in 3D circuits via magnons. The developed synthesis route will allow one to create 3D magnonic crystals with chiral unit cells, which are a prerequisite toward surface modes with topologically protected properties.
引用
收藏
页数:11
相关论文
共 56 条
  • [1] Ahrens J., 2005, VISUALIZATION HDB, DOI DOI 10.1016/B978-012387582-2/50038-1
  • [2] Facile Production of Ordered 3D Platinum Nanowire Networks with "Single Diamond" Bicontinuous Cubic Morphology
    Akbar, Samina
    Elliott, Joanne M.
    Rittman, Martyn
    Squires, Adam M.
    [J]. ADVANCED MATERIALS, 2013, 25 (08) : 1160 - 1164
  • [3] Magnetic multilayers on nanospheres
    Albrecht, M
    Hu, GH
    Guhr, IL
    Ulbrich, TC
    Boneberg, J
    Leiderer, P
    Schatz, G
    [J]. NATURE MATERIALS, 2005, 4 (03) : 203 - 206
  • [4] Resonant microwave-to-spin-wave transducer
    Au, Y.
    Ahmad, E.
    Dmytriiev, O.
    Dvornik, M.
    Davison, T.
    Kruglyak, V. V.
    [J]. APPLIED PHYSICS LETTERS, 2012, 100 (18)
  • [5] Spin-Wave Interference in Three-Dimensional Rolled-Up Ferromagnetic Microtubes
    Balhorn, Felix
    Mansfeld, Sebastian
    Krohn, Andreas
    Topp, Jesco
    Hansen, Wolfgang
    Heitmann, Detlef
    Mendach, Stefan
    [J]. PHYSICAL REVIEW LETTERS, 2010, 104 (03)
  • [6] Reversal of nanomagnets by propagating magnons in ferrimagnetic yttrium iron garnet enabling nonvolatile magnon memory
    Baumgaertl, Korbinian
    Grundler, Dirk
    [J]. NATURE COMMUNICATIONS, 2023, 14 (01)
  • [7] High-frequency modes in a magnetic buckyball nanoarchitecture
    Cheenikundil, Rajgowrav
    Bauer, Julien
    Goharyan, Mehrdad
    d'Aquino, Massimiliano
    Hertel, Riccardo
    [J]. APL MATERIALS, 2022, 10 (08)
  • [8] Coey J. M. D., 2001, Magnetism and Magnetic Materials
  • [9] Review of magnetic nanostructures grown by focused electron beam induced deposition (FEBID)
    De Teresa, J. M.
    Fernandez-Pacheco, A.
    Cordoba, R.
    Serrano-Ramon, L.
    Sangiao, S.
    Ibarra, M. R.
    [J]. JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2016, 49 (24)
  • [10] Complex free-space magnetic field textures induced by three-dimensional magnetic nanostructures
    Donnelly, Claire
    Hierro-Rodriguez, Aurelio
    Abert, Claas
    Witte, Katharina
    Skoric, Luka
    Sanz-Hernandez, Dedalo
    Finizio, Simone
    Meng, Fanfan
    McVitie, Stephen
    Raabe, Jorg
    Suess, Dieter
    Cowburn, Russell
    Fernandez-Pacheco, Amalio
    [J]. NATURE NANOTECHNOLOGY, 2022, 17 (02) : 136 - +