Pyrolyzed magnetic NiO/carbon-derived nanocomposite from a hierarchical nickel-based metal-organic framework with ultrahigh adsorption capacity

被引:44
作者
Beigi, Negar [1 ]
Shayesteh, Hadi [2 ]
Javanshir, Shahrzad [3 ]
Hosseinzadeh, Majid [1 ]
机构
[1] Iran Univ Sci & Technol, Sch Civil Engn, Tehran, Iran
[2] Iran Univ Sci & Technol, Sch Chem Petr & Gas Engn, Tehran, Iran
[3] Iran Univ Sci & Technol, Chem Dept, Pharmaceut & Heterocycl Cpds Res Lab, Tehran, Iran
关键词
Metal-organic framework; Porous carbon nanocomposite; Pyrolysis; Adsorption; Dye; METHYL-ORANGE; POROUS MATERIALS; AQUEOUS-SOLUTION; CONGO RED; AZO DYES; REMOVAL; DEGRADATION; WATER; NANOPARTICLES; MOFS;
D O I
10.1016/j.envres.2023.116146
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Herein, a simple one-pot solvothermal approach is used to create magnetic porous carbon nanocomposites which obtained from a nickel-based metal-organic framework (Ni-MOF) and examined for their ability to uptake methyl orange (MO) dye. Derived carbons with exceptional porosity and magnetic properties were created during the different pyrolysis temperatures of Ni-MOF (700, 800, and 900 degrees C) under a nitrogen atmosphere. The black powders were given the names CDM-700, CDM-800, and CDM-900 after they were obtained. A variety of analysis methods, including FESEM, EDS, XRD, FTIR, VSM, and N2 adsorption-desorption were used to characterize as-prepared powders. Furthermore, adsorbent dosage, contact time, pH variation, and initial dye concentration effects was investigated. The maximum adsorption capacities were 307.38, 5976.35, 4992.39, and 2636.54 mg/g for Ni-MOF, CDM-700, CDM-800, and CDM-900, respectively, which show the ultrahigh capacity of the resulted nanocomposites compared to newest materials. The results showed that not only the crystallinity turned but also the specific surface area was increased about four times after pyrolyzing. The results showed that the maximum adsorption capacity of MO dye for CDM-700 was obtained at adsorbent dosage of 0.083 g/L, contact time of 60 min, feed pH of 3, and temperature of 45 degrees C. The Langmuir model has the best match and suggests the adsorption process as a single layer. According to the results of reaction kinetic studies using well-known models, the pseudo-second-order model (R2 = 0.9989) displayed high agreement with the experimental data. The synthe-sized nanocomposite is introduced as a promising superadsorbent for eliminating dyes from contaminated water due to strong recycling performance up to the fifth cycle.
引用
收藏
页数:12
相关论文
共 74 条
[1]  
Ahmad K., 2020, MATER SCI ENG
[2]   Effect of metal atom in zeolitic imidazolate frameworks (ZIF-8 & 67) for removal of Pb2+ & Hg2+ from water [J].
Ahmad, Khalil ;
Shah, Habib-ur-Rehman ;
Ashfaq, Muhammad ;
Shah, Syed Shoaib Ahmad ;
Hussain, Ejaz ;
Naseem, Hafiza Ammara ;
Parveen, Sajidah ;
Ayub, Asif .
FOOD AND CHEMICAL TOXICOLOGY, 2021, 149
[3]   Rapid removal of organic micropollutants from water by a porous β-cyclodextrin polymer [J].
Alsbaiee, Alaaeddin ;
Smith, Brian J. ;
Xiao, Leilei ;
Ling, Yuhan ;
Helbling, Damian E. ;
Dichtel, William R. .
NATURE, 2016, 529 (7585) :190-U146
[4]   Use of cellulose-based wastes for adsorption of dyes from aqueous solutions [J].
Annadurai, G ;
Juang, RS ;
Lee, DJ .
JOURNAL OF HAZARDOUS MATERIALS, 2002, 92 (03) :263-274
[5]   Advanced chemical oxidation of reactive dyes in simulated dyehouse effluents by ferrioxalate-Fenton/UV-A and TiO2/UV-A processes [J].
Arslan, I ;
Balcioglu, IA ;
Bahnemann, DW .
DYES AND PIGMENTS, 2000, 47 (03) :207-218
[6]   Magnetic porous carbon nanocomposite derived from cobalt based-metal-organic framework for extraction and determination of homo and hetero-polycyclic aromatic hydrocarbons [J].
Asgharinezhad, Ali Akbar ;
Ebrahimzadeh, Homeira .
TALANTA, 2021, 233
[7]   Single-step synthesis and modification of CTAB-hectorite for efficient adsorption of methyl orange dye [J].
Asranudin ;
Purnomo, Adi Setyo ;
Prasetyoko, Didik ;
Bahruji, Hasliza ;
Holilah .
MATERIALS CHEMISTRY AND PHYSICS, 2022, 291
[8]   Preparation of chabazite with mesopores templated from a cationic polymer [J].
Bohstrom, Zebastian ;
Lillerud, Karl Petter .
MICROPOROUS AND MESOPOROUS MATERIALS, 2018, 271 :295-300
[9]   Removal of an analgesic using activated carbons prepared from urban and industrial residues [J].
Cabrita, I. ;
Ruiz, B. ;
Mestre, A. S. ;
Fonseca, I. M. ;
Carvalho, A. P. ;
Ania, C. O. .
CHEMICAL ENGINEERING JOURNAL, 2010, 163 (03) :249-255
[10]   Enhanced adsorption of thiophene with the GO-modified bimetallic organic framework Ni-MOF-199 [J].
Chen, Mingyan ;
Chen, Jie ;
Liu, Yucheng ;
Liu, Jie ;
Li, Lingli ;
Yang, Bing ;
Ma, Lili .
COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2019, 578