The Action of Chemical Denaturants: From Globular to Intrinsically Disordered Proteins

被引:4
|
作者
Paladino, Antonella [1 ]
Vitagliano, Luigi [1 ]
Graziano, Giuseppe [2 ]
机构
[1] CNR, Inst Biostruct & Bioimaging, Via Pietro Castellino 111, I-80131 Naples, Italy
[2] Univ Sannio, Dept Sci & Technol, Via Francesco Sanctis snc, I-82100 Benevento, Italy
来源
BIOLOGY-BASEL | 2023年 / 12卷 / 05期
关键词
denaturants; urea; guanidinium; solvent; conformational ensemble; intrinsically disordered proteins; AQUEOUS GUANIDINIUM CHLORIDE; SINGLE-MOLECULE FRET; AMYLOID FIBRIL FORMATION; FORCE-FIELD; STRUCTURAL-CHARACTERIZATION; ALIPHATIC-HYDROCARBONS; ALPHA-SYNUCLEIN; WATER-STRUCTURE; UREA; SPECTROSCOPY;
D O I
10.3390/biology12050754
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Proteins perform their many functions by adopting either a minimal number of strictly similar conformations, the native state, or a vast ensemble of highly flexible conformations. In both cases, their structural features are highly influenced by the chemical environment. Even though a plethora of experimental studies have demonstrated the impact of chemical denaturants on protein structure, the molecular mechanism underlying their action is still debated. In the present review, after a brief recapitulation of the main experimental data on protein denaturants, we survey both classical and more recent interpretations of the molecular basis of their action. In particular, we highlight the differences and similarities of the impact that denaturants have on different structural classes of proteins, i.e., globular, intrinsically disordered (IDP), and amyloid-like assemblies. Particular attention has been given to the IDPs, as recent studies are unraveling their fundamental importance in many physiological processes. The role that computation techniques are expected to play in the near future is illustrated.
引用
收藏
页数:18
相关论文
共 50 条
  • [21] A comparative study of the relationship between protein structure and β-aggregation in globular and intrinsically disordered proteins
    Linding, R
    Schymkowitz, J
    Rousseau, F
    Diella, F
    Serrano, L
    JOURNAL OF MOLECULAR BIOLOGY, 2004, 342 (01) : 345 - 353
  • [22] Revealing the Hidden Sensitivity of Intrinsically Disordered Proteins to their Chemical Environment
    Moses, David
    Yu, Feng
    Ginell, Garrett M.
    Shamoon, Nora M.
    Koenig, Patrick S.
    Holehouse, Alex S.
    Sukenik, Shahar
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2020, 11 (23): : 10131 - 10136
  • [23] Probing the Hidden Sensitivity of Intrinsically Disordered Proteins to Their Chemical Environment
    Moses, David
    Guadalupe, Karina
    Sukenik, Shahar
    BIOPHYSICAL JOURNAL, 2021, 120 (03) : 92A - 93A
  • [25] Quantum Chemical Calculations of NMR Chemical Shifts in Phosphorylated Intrinsically Disordered Proteins
    Precechtelova, Jana Pavlikova
    Mladek, Arnost
    Zapletal, Vojtech
    Hritz, Jozef
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2019, 15 (10) : 5642 - 5658
  • [26] Intrinsically Disordered Proteins: An Overview
    Trivedi, Rakesh
    Nagarajaram, Hampapathalu Adimurthy
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2022, 23 (22)
  • [27] Intrinsically disordered proteins and biomineralization
    Boskey, Adele L.
    Villarreal-Ramirez, Eduardo
    MATRIX BIOLOGY, 2016, 52-54 : 43 - 59
  • [28] Intrinsically Disordered Proteins in Cancer
    Meszaros, Balint
    Dosztanyi, Zsuzsanna
    Zeke, Andras
    Remenyi, Attila
    PROTEIN SCIENCE, 2018, 27 : 112 - 113
  • [29] Intrinsically disordered proteins: An update
    Dunker, A. Keith
    Yang, Jack Y.
    Oldfield, Christopher J.
    Obradovic, Zoran
    Meng, Jingwei
    Romero, Pedro
    Uversky, Vladimir N.
    PROCEEDINGS OF THE 7TH IEEE INTERNATIONAL SYMPOSIUM ON BIOINFORMATICS AND BIOENGINEERING, VOLS I AND II, 2007, : 49 - +
  • [30] Druggability of Intrinsically Disordered Proteins
    Joshi, Priyanka
    Vendruscolo, Michele
    INTRINSICALLY DISORDERED PROTEINS STUDIED BY NMR SPECTROSCOPY, 2015, 870 : 383 - 400