Polymer-Grafted Nanoparticles with Variable Grafting Densities for High Energy Density Polymeric Nanocomposite Dielectric Capacitors

被引:30
作者
Tawade, Bhausaheb, V [1 ]
Singh, Maninderjeet [2 ]
Apata, Ikeoluwa E. [1 ]
Veerasamy, Jagadesh [2 ]
Pradhan, Nihar [1 ]
Karim, Alamgir [2 ]
Douglas, Jack F. [3 ]
Raghavan, Dharmaraj [1 ]
机构
[1] Howard Univ, Dept Chem, Washington, DC 20059 USA
[2] Univ Houston, Dept Chem & Biomol Engn, Houston, TX 77204 USA
[3] Natl Inst Stand & Technol, Mat Sci & Engn Div, Gaithersburg, MD 20899 USA
来源
JACS AU | 2023年 / 3卷 / 05期
关键词
BaTiO3; PMMA; SI-ATRP; core-shell nanocomposites; polymer-grafted nanoparticles; dielectric constant; dielectric loss; energy storage; breakdown strength; BARIUM-TITANATE NANOPARTICLES; SURFACE-INITIATED POLYMERIZATION; RAFT POLYMERIZATION; BLOCK-COPOLYMERS; STORAGE; CONSTANT; NANODIELECTRICS; CONDUCTIVITY; ROUTE;
D O I
10.1021/jacsau.3c00022
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Designing high energy density dielectric capacitors for advanced energy storage systems needs nanocomposite-based dielectric materials, which can utilize the properties of both inorganic and polymeric materials. Polymer-grafted nanoparticle (PGNP)based nanocomposites alleviate the problems of poor nanocomposite properties by providing synergistic control over nanoparticle and polymer properties. Here, we synthesize "core- shell" barium titanate-poly(methyl methacrylate) (BaTiO3-PMMA) grafted PGNPs using surface-initiated atom transfer polymerization (SI-ATRP) with variable grafting densities of (0.303 to 0.929) chains/nm2 and high molecular masses (97700 g/mL to 130000 g/mol) and observe that low grafted density and high molecular mass based PGNP show high permittivity, high dielectric strength, and hence higher energy densities (approximate to 5.2 J/cm3) as compared to the higher grafted density PGNPs, presumably due to their "star-polymer"-like conformations with higher chain-end densities that are known to enhance breakdown. Nonetheless, these energy densities are an order of magnitude higher than their nanocomposite blend counterparts. We expect that these PGNPs can be readily used as commercial dielectric capacitors, and these findings can serve as guiding principles for developing tunable high energy density energy storage devices using PGNP systems.
引用
收藏
页码:1365 / 1375
页数:11
相关论文
共 63 条
[1]   50th Anniversary Perspective: Dielectric Phenomena in Polymers and Multilayered Dielectric Films [J].
Baer, Eric ;
Zhu, Lei .
MACROMOLECULES, 2017, 50 (06) :2239-2256
[2]   Measuring the Grafting Density of Nanoparticles in Solution by Analytical Ultracentrifugation and Total Organic Carbon Analysis [J].
Benoit, Denise N. ;
Zhu, Huiguang ;
Lilierose, Michael H. ;
Verm, Raymond A. ;
Ali, Naushaba ;
Morrison, Adam N. ;
Fortner, John D. ;
Ayendano, Carolina ;
Colvin, Vicki L. .
ANALYTICAL CHEMISTRY, 2012, 84 (21) :9238-9245
[3]   Observation of General Entropy-Enthalpy Compensation Effect in the Relaxation of Wrinkled Polymer Nanocomposite Films [J].
Bhadauriya, Sonal ;
Wang, Xiaoteng ;
Nallapaneni, Asritha ;
Masud, Ali ;
Wang, Zongyu ;
Lee, Jaejun ;
Bockstaller, Michael R. ;
Al-Enizi, Abdullah M. ;
Camp, Charles H., Jr. ;
Stafford, Christopher M. ;
Douglas, Jack F. ;
Karim, Alamgir .
NANO LETTERS, 2021, 21 (03) :1274-1281
[4]   Tuning the Relaxation of Nanopatterned Polymer Films with Polymer-Grafted Nanoparticles: Observation of Entropy-Enthalpy Compensation [J].
Bhadauriya, Sonal ;
Wang, Xiaoteng ;
Pitliya, Praveen ;
Zhang, Jianan ;
Raghavan, Dharmaraj ;
Bockstaller, Michael R. ;
Stafford, Christopher M. ;
Douglas, Jack F. ;
Karim, Alamgir .
NANO LETTERS, 2018, 18 (12) :7441-7447
[5]  
Bicerano J, 1999, J MACROMOL SCI R M C, VC39, P561
[6]   Tuning Selectivities in Gas Separation Membranes Based on Polymer-Grafted Nanoparticles [J].
Bilchak, Connor R. ;
Jhalaria, Mayank ;
Huang, Yucheng ;
Abbas, Zaid ;
Midya, Jiarul ;
Benedetti, Francesco M. ;
Parisi, Daniele ;
Egger, Werner ;
Dickmann, Marcel ;
Minelli, Matteo ;
Doghieri, Ferruccio ;
Nikoubashman, Arash ;
Durning, Christopher J. ;
Vlassopoulos, Dimitris ;
Jestin, Jacques ;
Smith, Zachary P. ;
Benicewicz, Brian C. ;
Rubinstein, Michael ;
Leibler, Ludwik ;
Kumar, Sanat K. .
ACS NANO, 2020, 14 (12) :17174-17183
[7]   High-Frequency Mechanical Behavior of Pure Polymer-Grafted Nanoparticle Constructs [J].
Bilchak, Connor R. ;
Huang, Yucheng ;
Benicewicz, Brian C. ;
Durning, Christopher J. ;
Kumar, Sanat K. .
ACS MACRO LETTERS, 2019, 8 (03) :294-298
[8]   Intrinsic dielectric properties and charge transport in oligomers of organic semiconductor copper phthalocyanine [J].
Bobnar, V ;
Levstik, A ;
Huang, C ;
Zhang, QM .
PHYSICAL REVIEW B, 2005, 71 (04)
[9]   Core-shell structured poly(vinylidene fluoride)-grafted-BaTiO3 nanocomposites prepared via reversible addition-fragmentation chain transfer (RAFT) polymerization of VDF for high energy storage capacitors [J].
Bouharras, Fatima Ezzahra ;
Raihane, Mustapha ;
Silly, Gilles ;
Totee, Cedric ;
Ameduri, Bruno .
POLYMER CHEMISTRY, 2019, 10 (07) :891-904
[10]   Luminescence of Terbium (III) Complexes Incorporated in Carboxylic Acid Functionalized Polystyrene/BaTiO3 Nanocomposites [J].
Cao, Xuan Thang ;
Showkat, Ali Md ;
Lee, Won-Ki ;
Lim, Kwon Taek .
MOLECULAR CRYSTALS AND LIQUID CRYSTALS, 2015, 622 (01) :36-43