HAUSDORFF DIMENSION OF A FAMILY OF NETWORKS

被引:6
作者
Zeng, Qingcheng [1 ]
Xi, Lifeng [1 ]
机构
[1] Ningbo Univ, Sch Math & Stat, Ningbo 315211, Peoples R China
基金
中国国家自然科学基金;
关键词
Fractal Network; Dimension; Touching Networks; SELF-SIMILARITY; FRACTALITY;
D O I
10.1142/S0218348X23500160
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a family of networks {G(n)}n >= 1, we define the Hausdorff dimension of {G(n)}n >= 1 inspired by the Frostman's characteristics of potential for Hausdorff dimension of fractals on Euclidean spaces. We prove that our Hausdorff dimension of the touching networks is log m/log N. Our definition is quite different from the fractal dimension defined for real-world networks.
引用
收藏
页数:10
相关论文
共 20 条
  • [1] Assouad, 1977, THESIS U PARIS 11 OR, V223-7769
  • [2] SELF-SIMILAR TOUCHING NETWORKS - PART I
    Bao, Hongwei
    Xi, Lifeng
    Zhao, Bing
    [J]. FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2021, 29 (06)
  • [3] Bouligand M., 1928, B SCI MATH, V52, P361
  • [4] Falconer K., 2004, FRACTAL GEOMETRY MAT
  • [5] SELF-SIMILAR TOUCHING NETWORKS - PART II
    Fan, Jiaqi
    Xi, Lifeng
    Zhao, Bing
    [J]. FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2021, 29 (06)
  • [6] A review of fractality and self-similarity in complex networks
    Gallos, Lazaros K.
    Song, Chaoming
    Makse, Hernan A.
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2007, 386 (02) : 686 - 691
  • [7] Accuracy of the ball-covering approach for fractal dimensions of complex networks and a rank-driven algorithm
    Gao, Liang
    Hu, Yanqing
    Di, Zengru
    [J]. PHYSICAL REVIEW E, 2008, 78 (04)
  • [8] Hausdorff FS, 1919, MATH ANN, V79, P157
  • [9] FRACTALS AND SELF SIMILARITY
    HUTCHINSON, JE
    [J]. INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1981, 30 (05) : 713 - 747
  • [10] A box-covering algorithm for fractal scaling in scale-free networks
    Kim, J. S.
    Goh, K.-I.
    Kahng, B.
    Kim, D.
    [J]. CHAOS, 2007, 17 (02)