Development and validation of a four-dimensional registration technique for DCE breast MRI

被引:5
作者
Mattusch, Chiara [1 ,2 ,3 ]
Bick, Ulrich [1 ,2 ,3 ]
Michallek, Florian [1 ,2 ,3 ,4 ]
机构
[1] Charite Univ Med Berlin, Charitepl 1, D-10117 Berlin, Germany
[2] Free Univ Berlin, Charitepl 1, D-10117 Berlin, Germany
[3] Humboldt Univ, Dept Radiol, Charitepl 1, D-10117 Berlin, Germany
[4] Mie Univ, Grad Sch Med, Dept Radiol, Tsu, Japan
关键词
MRI; Dynamic contrast-enhanced; Principal component analysis; Registration; Breast cancer; X-RAY MAMMOGRAPHY; NONRIGID REGISTRATION; IMAGE REGISTRATION; MOTION CORRECTION; CANCER; DEFORMATION; ALGORITHM; VOLUME;
D O I
10.1186/s13244-022-01362-w
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
BackgroundPatient motion can degrade image quality of dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) due to subtraction artifacts. By objectively and subjectively assessing the impact of principal component analysis (PCA)-based registration on pretreatment DCE-MRIs of breast cancer patients, we aim to validate four-dimensional registration for DCE breast MRI.ResultsAfter applying a four-dimensional, PCA-based registration algorithm to 154 pretreatment DCE-MRIs of histopathologically well-described breast cancer patients, we quantitatively determined image quality in unregistered and registered images. For subjective assessment, we ranked motion severity in a clinical reading setting according to four motion categories (0: no motion, 1: mild motion, 2: moderate motion, 3: severe motion with nondiagnostic image quality). The median of images with either moderate or severe motion (median category 2, IQR 0) was reassigned to motion category 1 (IQR 0) after registration. Motion category and motion reduction by registration were correlated (Spearman's rho: 0.83, p < 0.001). For objective assessment, we performed perfusion model fitting using the extended Tofts model and calculated its volume transfer coefficient K-trans as surrogate parameter for motion artifacts. Mean K-trans decreased from 0.103 (+/- 0.077) before registration to 0.097 (+/- 0.070) after registration (p < 0.001). Uncertainty in perfusion quantification was reduced by 7.4% after registration (+/- 15.5, p < 0.001).ConclusionsFour-dimensional, PCA-based image registration improves image quality of breast DCE-MRI by correcting for motion artifacts in subtraction images and reduces uncertainty in quantitative perfusion modeling. The improvement is most pronounced when moderate-to-severe motion artifacts are present.
引用
收藏
页数:11
相关论文
共 46 条
  • [1] Longitudinal, intermodality registration of quantitative breast PET and MRI data acquired before and during neoadjuvant chemotherapy: Preliminary results
    Atuegwu, Nkiruka C.
    Li, Xia
    Arlinghaus, Lori R.
    Abramson, Richard G.
    Williams, Jason M.
    Chakravarthy, A. Bapsi
    Abramson, Vandana G.
    Yankeelov, Thomas E.
    [J]. MEDICAL PHYSICS, 2014, 41 (05)
  • [2] High-risk breast cancer surveillance with MRI: 10-year experience from the German consortium for hereditary breast and ovarian cancer
    Bick, Ulrich
    Engel, Christoph
    Krug, Barbara
    Heindel, Walter
    Fallenberg, Eva M.
    Rhiem, Kerstin
    Maintz, David
    Golatta, Michael
    Speiser, Dorothee
    Rjosk-Dendorfer, Dorothea
    Laemmer-Skarke, Irina
    Dietzel, Frederic
    Schaefer, Karl Werner Fritz
    Leinert, Elena
    Weigel, Stefanie
    Sauer, Stephanie
    Pertschy, Stefanie
    Hofmockel, Thomas
    Hagert-Winkler, Anne
    Kast, Karin
    Quante, Anne
    Meindl, Alfons
    Kiechle, Marion
    Loeffler, Markus
    Schmutzler, Rita K.
    Blohmer, Jens-Uwe
    Horn, Denise
    Varon-Mateeva, Raymonda
    Huebbel, Verena
    Herold, Natalie
    Puesken, Michael
    Wimberger, Pauline
    Meisel, Cornelia
    Keller, Katja
    Antoch, Gerald
    Vesper, Anne-Sophie
    Fehm, Tanja N.
    Schlegelberger, Brigitte
    Auber, Bernd
    Wallaschek, Hannah
    Heil, Joerg
    Schott, Sarah
    Dikow, Nicola
    Mundhenke, Christoph
    Arnold, Norbert
    Caliebe, Almuth
    Briest, Susanne
    Lemke, Johannes
    Gril, Sabine
    Pfeifer, Katharina
    [J]. BREAST CANCER RESEARCH AND TREATMENT, 2019, 175 (01) : 217 - 228
  • [3] Boehler Tobias, 2012, Critical Reviews in Biomedical Engineering, V40, P235, DOI 10.1615/CritRevBiomedEng.v40.i3.60
  • [4] Epidemiology of Breast Cancer in Women
    Coughlin, Steven S.
    [J]. BREAST CANCER METASTASIS AND DRUG RESISTANCE: CHALLENGES AND PROGRESS, 2ND EDITION, 2019, 1152 : 9 - 29
  • [5] Comparison and evaluation of rigid, affine, and nonrigid registration of breast MR images
    Denton, ERE
    Sonoda, LI
    Rueckert, D
    Rankin, SC
    Hayes, C
    Leach, MO
    Hill, DLG
    Hawkes, DJ
    [J]. JOURNAL OF COMPUTER ASSISTED TOMOGRAPHY, 1999, 23 (05) : 800 - 805
  • [6] Fully automated deformable registration of breast DCE-MRI and PET/CT
    Dmitriev, I. D.
    Loo, C. E.
    Vogel, W. V.
    Pengel, K. E.
    Gilhuijs, K. G. A.
    [J]. PHYSICS IN MEDICINE AND BIOLOGY, 2013, 58 (04) : 1221 - 1233
  • [7] Early prediction of neoadjuvant treatment outcome in locally advanced breast cancer using parametric response mapping and radial heterogeneity from breast MRI
    Drisis, Stylianos
    El Adoui, Mohammed
    Flamen, Patrick
    Benjelloun, Mohammed
    Dewind, Roland
    Paesmans, Mariane
    Ignatiadis, Michail
    Bali, Maria
    Lemort, Marc
    [J]. JOURNAL OF MAGNETIC RESONANCE IMAGING, 2020, 51 (05) : 1403 - 1411
  • [8] A PRM approach for early prediction of breast cancer response to chemotherapy based on registered MR images
    El Adoui, Mohammed
    Drisis, Stylianos
    Benjelloun, Mohammed
    [J]. INTERNATIONAL JOURNAL OF COMPUTER ASSISTED RADIOLOGY AND SURGERY, 2018, 13 (08) : 1233 - 1243
  • [9] Breast Cancer Screening, Mammography, and Other Modalities
    Fiorica, James V.
    [J]. CLINICAL OBSTETRICS AND GYNECOLOGY, 2016, 59 (04) : 688 - 709
  • [10] Breast imaging: Beyond the detection
    Galati, Francesca
    Moffa, Giuliana
    Pediconi, Federica
    [J]. EUROPEAN JOURNAL OF RADIOLOGY, 2022, 146