High-throughput genetic engineering tools for regulating gene expression in a microbial cell factory

被引:17
作者
Yeom, Jinho [1 ]
Park, Jong Seong [1 ]
Jung, Seung-Woon [1 ]
Lee, Sumin [1 ]
Kwon, Hyukjin [1 ]
Yoo, Seung Min [1 ]
机构
[1] Chung Ang Univ, Sch Integrat Engn, Seoul, South Korea
关键词
Microbial production; gene regulation; high-throughput genetic engineering tool; microbial cell factory; high-production performance; ESCHERICHIA-COLI; PRECISE MANIPULATION; GENOME; RNA; DESIGN; CAS9; PATHWAY; CHROMOSOMES; ACTIVATION; STRATEGIES;
D O I
10.1080/07388551.2021.2007351
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
With the rapid advances in biotechnological tools and strategies, microbial cell factory-constructing strategies have been established for the production of value-added compounds. However, optimizing the tradeoff between the biomass, yield, and titer remains a challenge in microbial production. Gene regulation is necessary to optimize and control metabolic fluxes in microorganisms for high-production performance. Various high-throughput genetic engineering tools have been developed for achieving rational gene regulation and genetic perturbation, diversifying the cellular phenotype and enhancing bioproduction performance. In this paper, we review the current high-throughput genetic engineering tools for gene regulation. In particular, technological approaches used in a diverse range of genetic tools for constructing microbial cell factories are introduced, and representative applications of these tools are presented. Finally, the prospects for high-throughput genetic engineering tools for gene regulation are discussed.
引用
收藏
页码:82 / 99
页数:18
相关论文
共 115 条
[31]   A rapid and versatile tool for genomic engineering in Lactococcus lactis [J].
Guo, Tingting ;
Xin, Yongping ;
Zhang, Yi ;
Gu, Xinyi ;
Kong, Jian .
MICROBIAL CELL FACTORIES, 2019, 18 (1)
[32]   Recent advances in large-scale transposon mutagenesis [J].
Hamer, L ;
DeZwaan, TM ;
Montenegro-Chamorro, MV ;
Frank, SA ;
Hamer, JE .
CURRENT OPINION IN CHEMICAL BIOLOGY, 2001, 5 (01) :67-73
[33]   Current and Emerging Methods for the Synthesis of Single-Stranded DNA [J].
Hao, Min ;
Qiao, Jianjun ;
Qi, Hao .
GENES, 2020, 11 (02)
[34]   Controlling Citrate Synthase Expression by CRISPR/Cas9 Genome Editing for n-Butanol Production in Escherichia coli [J].
Heo, Min-Ji ;
Jung, Hwi-Min ;
Um, Jaeyong ;
Lee, Sang-Woo ;
Oh, Min-Kyu .
ACS SYNTHETIC BIOLOGY, 2017, 6 (02) :182-189
[35]   Precise Manipulation of Chromosomes in Vivo Enables Genome-Wide Codon Replacement [J].
Isaacs, Farren J. ;
Carr, Peter A. ;
Wang, Harris H. ;
Lajoie, Marc J. ;
Sterling, Bram ;
Kraal, Laurens ;
Tolonen, Andrew C. ;
Gianoulis, Tara A. ;
Goodman, Daniel B. ;
Reppas, Nikos B. ;
Emig, Christopher J. ;
Bang, Duhee ;
Hwang, Samuel J. ;
Jewett, Michael C. ;
Jacobson, Joseph M. ;
Church, George M. .
SCIENCE, 2011, 333 (6040) :348-353
[36]   Comprehensive Genome-wide Perturbations via CRISPR Adaptation Reveal Complex Genetics of Antibiotic Sensitivity [J].
Jiang, Wenyan ;
Oikonomou, Panos ;
Tavazoie, Saeed .
CELL, 2020, 180 (05) :1002-+
[37]   RNA-guided editing of bacterial genomes using CRISPR-Cas systems [J].
Jiang, Wenyan ;
Bikard, David ;
Cox, David ;
Zhang, Feng ;
Marraffini, Luciano A. .
NATURE BIOTECHNOLOGY, 2013, 31 (03) :233-239
[38]   A Programmable Dual-RNA-Guided DNA Endonuclease in Adaptive Bacterial Immunity [J].
Jinek, Martin ;
Chylinski, Krzysztof ;
Fonfara, Ines ;
Hauer, Michael ;
Doudna, Jennifer A. ;
Charpentier, Emmanuelle .
SCIENCE, 2012, 337 (6096) :816-821
[39]   Base-pairing requirement for RNA silencing by a bacterial small RNA and acceleration of duplex formation by Hfq [J].
Kawamoto, Hiroshi ;
Koide, Yukari ;
Morita, Teppei ;
Aiba, Hiroji .
MOLECULAR MICROBIOLOGY, 2006, 61 (04) :1013-1022
[40]  
Kiani S, 2015, NAT METHODS, V12, P1051, DOI [10.1038/NMETH.3580, 10.1038/nmeth.3580]