Tissue Contamination Challenges the Credibility of Machine Learning Models in Real World Digital Pathology

被引:2
作者
Irmakci, Ismail [1 ]
Nateghi, Ramin [1 ]
Zhou, Rujoi [1 ]
Vescovo, Mariavittoria [1 ]
Saft, Madeline [1 ]
Ross, Ashley E. [1 ]
Yang, Ximing J. [1 ]
Cooper, Lee A. D. [1 ]
Goldstein, Jeffery A. [1 ]
机构
[1] Northwestern Univ, Feinberg Sch Med, Dept Pathol, Chicago, IL 60208 USA
关键词
artificial intelligence; digital pathology; histology; machine learning; placenta; prostate; tissue contaminants; PERIVILLOUS FIBRIN DEPOSITION; VILLOUS MATURATION; EXTRANEOUS TISSUE; INFARCTION; DEFINITIONS; ASSOCIATION; LESIONS;
D O I
10.1016/j.modpat.2024.100422
中图分类号
R36 [病理学];
学科分类号
100104 ;
摘要
Machine learning (ML) models are poised to transform surgical pathology practice. The most successful use attention mechanisms to examine whole slides, identify which areas of tissue are diagnostic, and use them to guide diagnosis. Tissue contaminants, such as floaters, represent unexpected tissue. Although human pathologists are extensively trained to consider and detect tissue contaminants, we examined their impact on ML models. We trained 4 whole-slide models. Three operate in placenta for the following functions: (1) detection of decidual arteriopathy, (2) estimation of gestational age, and (3) classification of macroscopic placental lesions. We also developed a model to detect prostate cancer in needle biopsies. We designed experiments wherein patches of contaminant tissue are randomly sampled from known slides and digitally added to patient slides and measured model performance. We measured the proportion of attention given to contaminants and examined the impact of contaminants in the t-distributed stochastic neighbor embedding feature space. Every model showed performance degradation in response to one or more tissue contaminants. Decidual arteriopathy detection-balanced accuracy decreased from 0.74 to 0.69 +/- 0.01 with addition of 1 patch of prostate tissue for every 100 patches of placenta (1% contaminant). Bladder, added at 10% contaminant, raised the mean absolute error in estimating gestational age from 1.626 weeks to 2.371 +/- 0.003 weeks. Blood, incorporated into placental sections, induced falsenegative diagnoses of intervillous thrombi. Addition of bladder to prostate cancer needle biopsies induced false positives, a selection of high-attention patches, representing 0.033 mm2, and resulted in a 97% false-positive rate when added to needle biopsies. Contaminant patches received attention at or above the rate of the average patch of patient tissue. Tissue contaminants induce errors in modern ML models. The high level of attention given to contaminants indicates a failure to encode biological phenomena. Practitioners should move to quantify and ameliorate this problem. (c) 2024 United States & Canadian Academy of Pathology. Published by Elsevier Inc. All rights reserved.
引用
收藏
页数:15
相关论文
共 80 条
[31]   Maternal floor infarction and massive perivillous fibrin deposition: Histological definitions, association with intrauterine fetal growth restriction, and risk of recurrence [J].
Katzman, PJ ;
Genest, DR .
PEDIATRIC AND DEVELOPMENTAL PATHOLOGY, 2002, 5 (02) :159-164
[32]   Automatic Placental Distal Villous Hypoplasia Scoring using a Deep Convolutional Neural Network Regression Model [J].
Khodaee, Afsoon ;
Grynspan, David ;
Bainbridge, Shannon ;
Ukwatta, Eranga ;
Chan, Adrian D. C. .
2022 IEEE INTERNATIONAL INSTRUMENTATION AND MEASUREMENT TECHNOLOGY CONFERENCE (I2MTC 2022), 2022,
[33]   Sampling and Definitions of Placental Lesions Amsterdam Placental Workshop Group Consensus Statement [J].
Khong, T. Yee ;
Mooney, Eoghan E. ;
Ariel, Ilana ;
Balmus, Nathalie C. M. ;
Boyd, Theonia K. ;
Brundler, Marie-Anne ;
Derricott, Hayley ;
Evans, Margaret J. ;
Faye-Petersen, Ona M. ;
Gillan, John E. ;
Heazell, Alex E. P. ;
Heller, Debra S. ;
Jacques, Suzanne M. ;
Keating, Sarah ;
Kelehan, Peter ;
Maes, Ann ;
McKay, Eileen M. ;
Morgan, Terry K. ;
Nikkels, Peter G. J. ;
Parks, W. Tony ;
Redline, Raymond W. ;
Scheimberg, Irene ;
Schoots, Mirthe H. ;
Sebire, Neil J. ;
Timmer, Albert ;
Turowski, Gitta ;
van der Voorn, J. Patrick ;
van Lijnschoten, Ineke ;
Gordijn, Sanne J. .
ARCHIVES OF PATHOLOGY & LABORATORY MEDICINE, 2016, 140 (07) :698-713
[34]   Automated image analysis of placental villi and syncytial knots in histological sections [J].
Kidron, Debora ;
Vainer, Ifat ;
Fisher, Yael ;
Sharony, Reuven .
PLACENTA, 2017, 53 :113-118
[35]  
Korpihalkola J, 2021, PROC CONF OPEN INNOV, P206, DOI 10.23919/FRUCT52173.2021.9435562
[36]   Intra- and interobserver agreement and statistical clustering of placental histopathologic features relevant to preterm birth [J].
Kramer, Michael S. ;
Chen, Moy Fony ;
Roy, Indrojit ;
Dassa, Clement ;
Lamoureux, Julie ;
Kahn, Susan R. ;
McNamara, Helen ;
Platt, Robert W. .
AMERICAN JOURNAL OF OBSTETRICS AND GYNECOLOGY, 2006, 195 (06) :1674-1679
[37]   Benchmarking weakly-supervised deep learning pipelines for whole slide classification in computational pathology [J].
Laleh, Narmin Ghaffari ;
Muti, Hannah Sophie ;
Loeffler, Chiara Maria Lavinia ;
Echle, Amelie ;
Saldanha, Oliver Lester ;
Mahmood, Faisal ;
Lu, Ming Y. ;
Trautwein, Christian ;
Langer, Rupert ;
Dislich, Bastian ;
Buelow, Roman D. ;
Grabsch, Heike Irmgard ;
Brenner, Hermann ;
Chang-Claude, Jenny ;
Alwers, Elizabeth ;
Brinker, Titus J. ;
Khader, Firas ;
Truhn, Daniel ;
Gaisa, Nadine T. ;
Boor, Peter ;
Hoffmeister, Michael ;
Schulz, Volkmar ;
Kather, Jakob Nikolas .
MEDICAL IMAGE ANALYSIS, 2022, 79
[38]   Extraneous Tissue A Potential Source for Diagnostic Error in Surgical Pathology [J].
Layfield, Lester J. ;
Witt, Benjamin L. ;
Metzger, Kenneth G. ;
Anderson, Gina M. .
AMERICAN JOURNAL OF CLINICAL PATHOLOGY, 2011, 136 (05) :767-772
[39]   Gene markers of normal villous maturation and their expression in placentas with maturational pathology [J].
Leavey, Katherine ;
Benton, Samantha J. ;
Grynspan, David ;
Bainbridge, Shannon A. ;
Morgen, Eric K. ;
Cox, Brian J. .
PLACENTA, 2017, 58 :52-59
[40]   Deep learning-enabled assessment of cardiac allograft rejection from endomyocardial biopsies [J].
Lipkova, Jana ;
Chen, Tiffany Y. ;
Lu, Ming Y. ;
Chen, Richard J. ;
Shady, Maha ;
Williams, Mane ;
Wang, Jingwen ;
Noor, Zahra ;
Mitchell, Richard N. ;
Turan, Mehmet ;
Coskun, Gulfize ;
Yilmaz, Funda ;
Demir, Derya ;
Nart, Deniz ;
Basak, Kayhan ;
Turhan, Nesrin ;
Ozkara, Selvinaz ;
Banz, Yara ;
Odening, Katja E. ;
Mahmood, Faisal .
NATURE MEDICINE, 2022, 28 (03) :575-+