Upper bounds on the acyclic chromatic index of degenerate graphs

被引:0
作者
Anto, Nevil [1 ]
Basavaraju, Manu [1 ]
Hegde, Suresh Manjanath [1 ]
Kulamarva, Shashanka [1 ,2 ]
机构
[1] Natl Inst Technol Karnataka, Surathkal 575025, India
[2] Indian Inst Sci, Bangalore 560012, India
关键词
Acyclic chromatic index; Acyclic edge coloring; 3-degenerate graphs; k-degenerate graphs; EDGE; COLORINGS; NUMBER;
D O I
10.1016/j.disc.2024.113898
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
An acyclic edge coloring of a graph is a proper edge coloring without any bichromatic cycles. The acyclic chromatic index of a graph G denoted by a'(G), is the minimum k such that G has an acyclic edge coloring with k colors. Fiamcik [10] conjectured that a'(G) <= Delta + 2 for any graph G with maximum degree Delta. A graph G is said to be k-degenerate if every subgraph of G has a vertex of degree at most k. Basavaraju and Chandran [4] proved that the conjecture is true for 2-degenerate graphs. We prove that for a 3-degenerate graph G, a'(G) <= Delta + 5, thereby bringing the upper bound closer to the conjectured bound. We also consider k-degenerate graphs with k >= 4 and give an upper bound for the acyclic chromatic index of the same. (c) 2024 Elsevier B.V. All rights reserved.
引用
收藏
页数:11
相关论文
共 17 条
[1]   All-to-all wavelength-routing in all-optical compound networks [J].
Amar, D ;
Raspaud, A ;
Togni, O .
DISCRETE MATHEMATICS, 2001, 235 (1-3) :353-363
[2]   Optimal acyclic edge-coloring of cubic graphs [J].
Andersen, Lars Dovling ;
Macajova, Edita ;
Mazak, Jan .
JOURNAL OF GRAPH THEORY, 2012, 71 (04) :353-364
[3]   ACYCLIC EDGE-COLORING OF PLANAR GRAPHS [J].
Basavaraju, Manu ;
Chandran, L. Sunil ;
Cohen, Nathann ;
Havet, Frederic ;
Mueller, Tobias .
SIAM JOURNAL ON DISCRETE MATHEMATICS, 2011, 25 (02) :463-478
[4]   Acyclic edge coloring of 2-degenerate graphs [J].
Basavaraju, Manu ;
Chandran, L. Sunil .
JOURNAL OF GRAPH THEORY, 2012, 69 (01) :1-27
[5]   ACYCLIC EDGE-COLORING OF PLANAR GRAPHS: Δ COLORS SUFFICE WHEN Δ IS LARGE [J].
Cranston, Daniel W. .
SIAM JOURNAL ON DISCRETE MATHEMATICS, 2019, 33 (02) :614-628
[6]  
Diestel R., 2017, Graph Theory, DOI [10.1007/978-3-662-53622-3, DOI 10.1007/978-3-662-53622-3]
[7]   Star coloring of graphs [J].
Fertin, G ;
Raspaud, A ;
Reed, B .
JOURNAL OF GRAPH THEORY, 2004, 47 (03) :163-182
[8]   A new bound on the acyclic edge chromatic number [J].
Fialho, Paula M. S. ;
de Lima, Bernardo N. B. ;
Procacci, Aldo .
DISCRETE MATHEMATICS, 2020, 343 (11)
[9]  
Fiamik J., 1978, Math. Slovaca, V28, P139
[10]   Acyclic edge colourings of graphs with the number of edges linearly bounded by the number of vertices [J].
Fiedorowicz, Anna .
INFORMATION PROCESSING LETTERS, 2011, 111 (06) :287-290