Assessing the utility of high spectral resolution lidar for measuring particulate backscatter in the ocean and evaluating satellite ocean color retrievals

被引:6
作者
Collister, Brian [1 ]
Hair, Johnathan [1 ]
Hostetler, Chris [1 ]
Cook, Anthony [1 ]
Ibrahim, Amir [2 ]
Boss, Emmanuel [3 ]
Scarino, Amy Jo [1 ,4 ]
Shingler, Taylor [1 ]
Slade, Wayne [5 ]
Twardowski, Michael [6 ]
Behrenfeld, Michael [7 ]
Cetinic, Ivona [2 ,8 ]
机构
[1] NASA, Langley Res Ctr, Hampton, VA 23681 USA
[2] NASA, Goddard Spaceflight Ctr, Greenbelt, MD 20771 USA
[3] Univ Maine, Orono, ME 04469 USA
[4] Coherent Applicat Inc, Hampton, VA 23666 USA
[5] Sequoia Sci Inc, Bellevue, WA 98005 USA
[6] Florida Atlantic Univ, Harbor Branch, Oceanog Inst, Ft Pierce, FL 34946 USA
[7] Oregon State Univ, Dept Bot & Plant Pathol, Corvallis, OR 97331 USA
[8] Morgan State Univ, GESTAR 2, Baltimore, MD 21251 USA
关键词
Backscatter; High spectral resolution lidar; Ocean color; Ocean particles; Aerosols; Validation; INHERENT OPTICAL-PROPERTIES; SCATTERING; VALIDATION; ALGORITHM; AEROSOL; REFLECTANCE; METHODOLOGY; ABSORPTION; UNDERWAY; MODEL;
D O I
10.1016/j.rse.2023.113898
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Airborne high spectral resolution lidar (HSRL) measurements of ocean particulate backscatter (bbp) offer dramatic improvements in spatiotemporal coverage over in situ techniques, filling observational "blind spots" that limit our ability to study ocean processes. However, the technique has been assessed in only a few limited cases, and uncertainties remain regarding its applicability across a diversity of optical domains. In this study, we present the first comprehensive comparison of bbp derived from airborne HSRL, satellite ocean color, and in situ measurements to increase confidence in HSRL bbp retrievals and to demonstrate the value of airborne HSRL for assessing/improving satellite ocean color algorithms. Retrievals of bbp performed using the NASA Langley HSRL1 instrument agreed with in situ measurements performed across a diversity of optical and ecological domains. Comparisons across multiple campaigns revealed regional and seasonal dependencies in the ocean color retrievals that likely resulted from applying a single configuration of the ocean color retrieval across multiple distinct domains. In two case studies, atmospheric measurements from HSRL-1 and systematic differences in bbp between HSRL and the 2018 NASA ocean color distribution provided evidence of insufficient atmospheric correction of the ocean color retrieval. These differences in bbp were absent from comparisons against the 2022 ocean color distribution, suggesting that changes made to the algorithm resulted in improved retrievals. These cases highlight the advantages of airborne HSRL for assessing and improving ocean color retrievals, namely its ability to provide simultaneous, independent profiles of atmosphere and ocean optical properties, and improvements in the spatiotemporal coverage of satellite matchups.
引用
收藏
页数:16
相关论文
共 76 条
[21]   Ocean Backscatter Profiling Using High-Spectral-Resolution Lidar and a Perturbation Retrieval [J].
Churnside, James H. ;
Hair, Johnathan W. ;
Hostetler, Chris A. ;
Scarino, Amy Jo .
REMOTE SENSING, 2018, 10 (12)
[22]   Review of profiling oceanographic lidar [J].
Churnside, James H. .
OPTICAL ENGINEERING, 2014, 53 (05)
[23]   Thin scattering layers observed by airborne lidar [J].
Churnside, James H. ;
Donaghay, Percy L. .
ICES JOURNAL OF MARINE SCIENCE, 2009, 66 (04) :778-789
[24]   Comparison of airborne lidar measurements with 420 kHz echo-sounder measurements of zooplankton [J].
Churnside, JH ;
Thorne, RE .
APPLIED OPTICS, 2005, 44 (26) :5504-5511
[25]   Observing the Global Ocean with Biogeochemical-Argo [J].
Claustre, Herve ;
Johnson, Kenneth S. ;
Takeshita, Yuichiro .
ANNUAL REVIEW OF MARINE SCIENCE, VOL 12, 2020, 12 :23-48
[26]   Polarized lidar and ocean particles: insights from a mesoscale coccolithophore bloom [J].
Collister, Brian L. ;
Zimmerman, Richard C. ;
Hill, Victoria J. ;
Sukenik, Charles, I ;
Balch, William M. .
APPLIED OPTICS, 2020, 59 (15) :4650-4662
[27]   Particulate optical scattering coefficients along an Atlantic Meridional Transect [J].
Dall'Olmo, G. ;
Boss, E. ;
Behrenfeld, M. J. ;
Westberry, T. K. .
OPTICS EXPRESS, 2012, 20 (19) :21532-21551
[28]   Alignment of optical backscatter measurements from the EXPORTS Northeast Pacific Field Deployment [J].
Erickson, Zachary K. ;
Cetinic, Ivona ;
Zhang, Xiaodong ;
Boss, Emmanuel ;
Werdell, P. Jeremy ;
Freeman, Scott ;
Hu, Lianbo ;
Lee, Craig ;
Omand, Melissa ;
Perry, Mary Jane .
ELEMENTA-SCIENCE OF THE ANTHROPOCENE, 2022, 10 (01)
[29]   Phytoplankton Growth and Productivity in the Western North Atlantic: Observations of Regional Variability From the NAAMES Field Campaigns [J].
Fox, James ;
Behrenfeld, Michael J. ;
Haentjens, Nils ;
Chase, Alison ;
Kramer, Sasha J. ;
Boss, Emmanuel ;
Karp-Boss, Lee ;
Fisher, Nerissa L. ;
Penta, W. Bryce ;
Westberry, Toby K. ;
Halsey, Kimberly H. .
FRONTIERS IN MARINE SCIENCE, 2020, 7
[30]   Moderate Resolution Imaging Spectroradiometer on Terra: limitations for ocean color applications [J].
Franz, Bryan A. ;
Kwiatkowska, Ewa J. ;
Meister, Gerhard ;
McClain, Charles R. .
JOURNAL OF APPLIED REMOTE SENSING, 2008, 2 (01)