Neuromorphic computing based on halide perovskites

被引:64
作者
Vasilopoulou, Maria [1 ]
bin Mohd Yusoff, Abd Rashid [2 ]
Chai, Yang [3 ,4 ]
Kourtis, Michael-Alexandros [5 ]
Matsushima, Toshinori [6 ]
Gasparini, Nicola [7 ,8 ]
Du, Rose [9 ]
Gao, Feng [10 ]
Nazeeruddin, Mohammad Khaja [11 ]
Anthopoulos, Thomas D. [12 ]
Noh, Yong-Young [13 ]
机构
[1] Inst Nanosci & Nanotechnol, Natl Ctr Sci Res Demokritos, Attica, Greece
[2] Univ Teknol Malaysia, Dept Phys, Fac Sci, Johor Baharu, Malaysia
[3] Hong Kong Polytech Univ, Dept Appl Phys, Hong Kong, Peoples R China
[4] Hong Kong Polytech Univ, Shenzhen Res Inst, Shenzhen, Peoples R China
[5] Inst Informat & Telecommun, Natl Ctr Sci Res Demokritos, Athens, Greece
[6] Kyushu Univ, Int Inst Carbon Neutral Energy Res, Fukuoka, Japan
[7] Imperial Coll London, Dept Chem, London, England
[8] Imperial Coll London, Ctr Processable Elect, London, England
[9] Brigham & Womens Hosp, Harvard Med Sch, Dept Neurosurg, Boston, MA USA
[10] Linkoping Univ, Dept Phys Chem & Biol IFM, Linkoping, Sweden
[11] Ecole Polytech Fed Lausanne EPFL, Inst Chem Sci & Engn, Sion, Switzerland
[12] King Abdullah Univ Sci & Technol KAUST, KAUST Solar Ctr KSC, Phys Sci & Engn Div, Thuwal, Saudi Arabia
[13] Pohang Univ Sci & Technol POSTECH, Dept Chem Engn, Pohang, South Korea
基金
新加坡国家研究基金会;
关键词
MEMRISTORS; DEVICE;
D O I
10.1038/s41928-023-01082-z
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Neuromorphic computing requires electronic systems that can perform massively parallel computational tasks with low energy consumption. Such systems have traditionally been based on complementary metal-oxide-semiconductor circuits, but further advances in computational performance will probably require devices that can offer high-order complexity combined with area and energy efficiency. Halide perovskites can handle both ions and electronic charges, and could be used to create adaptive computing systems based on intrinsic device dynamics. The materials also offer exotic switching phenomena, providing opportunities for multimodal systems. Here we explore the development of neuromorphic hardware systems based on halide perovskites. We examine how devices based on these materials can serve as synapses and neurons, and can be used in neuromorphic computing networks. We also consider the challenges involved in developing practical perovskite neuromorphic systems, and highlight how these systems could augment and complement digital circuits. This Review examines the development of neuromorphic hardware systems based on halide perovskites, considering how devices based on these materials can serve as synapses and neurons, and can be used in neuromorphic computing networks.
引用
收藏
页码:949 / 962
页数:14
相关论文
共 116 条
[1]   Synaptic plasticity: taming the beast [J].
Abbott, L. F. ;
Nelson, Sacha B. .
NATURE NEUROSCIENCE, 2000, 3 (11) :1178-1183
[2]   Synaptic computation [J].
Abbott, LF ;
Regehr, WG .
NATURE, 2004, 431 (7010) :796-803
[3]   Electrically driven reprogrammable phase-change metasurface reaching 80% efficiency [J].
Abdollahramezani, Sajjad ;
Hemmatyar, Omid ;
Taghinejad, Mohammad ;
Taghinejad, Hossein ;
Krasnok, Alex ;
Eftekhar, Ali A. ;
Teichrib, Christian ;
Deshmukh, Sanchit ;
El-Sayed, Mostafa A. ;
Pop, Eric ;
Wuttig, Matthias ;
Alu, Andrea ;
Cai, Wenshan ;
Adibi, Ali .
NATURE COMMUNICATIONS, 2022, 13 (01)
[4]   Ionic-electronic halide perovskite memdiodes enabling neuromorphic computing with a second-order complexity [J].
Abraham, Rohit ;
Kovalenko, Maksym V. ;
Ielmini, Daniele ;
Milozzi, Alessandro ;
Tsarev, Sergey ;
Bronnimann, Rolf ;
Boehme, Simon C. ;
Wu, Erfu ;
Shorubalko, Ivan .
SCIENCE ADVANCES, 2022, 8 (51)
[5]  
Adam GC., 2017, IEEE Trans. Electron Devices, V64, P16576530
[6]  
Bessonov AA, 2015, NAT MATER, V14, P199, DOI [10.1038/NMAT4135, 10.1038/nmat4135]
[7]   Efficient Perovskite Solar Cell Modules with High Stability Enabled by Iodide Diffusion Barriers [J].
Bi, Enbing ;
Tang, Wentao ;
Chen, Han ;
Wang, Yanbo ;
Barbaud, Julien ;
Wu, Tianhao ;
Kong, Weiyu ;
Tu, Peng ;
Zhu, Hong ;
Zeng, Xiaoqin ;
He, Jinjin ;
Kan, Shin-ichi ;
Yang, Xudong ;
Graetzel, Michael ;
Han, Liyuan .
JOULE, 2019, 3 (11) :2748-2760
[8]   Room-temperature superfluorescence in hybrid perovskites and its origins [J].
Biliroglu, Melike ;
Findik, Gamze ;
Mendes, Juliana ;
Seyitliyev, Dovletgeldi ;
Lei, Lei ;
Dong, Qi ;
Mehta, Yash ;
Temnov, Vasily V. ;
So, Franky ;
Gundogdu, Kenan .
NATURE PHOTONICS, 2022, 16 (04) :324-+
[9]   Learning through ferroelectric domain dynamics in solid-state synapses [J].
Boyn, Soeren ;
Grollier, Julie ;
Lecerf, Gwendal ;
Xu, Bin ;
Locatelli, Nicolas ;
Fusil, Stephane ;
Girod, Stephanie ;
Carretero, Cecile ;
Garcia, Karin ;
Xavier, Stephane ;
Tomas, Jean ;
Bellaiche, Laurent ;
Bibes, Manuel ;
Barthelemy, Agnes ;
Saighi, Sylvain ;
Garcia, Vincent .
NATURE COMMUNICATIONS, 2017, 8
[10]   Power-efficient combinatorial optimization using intrinsic noise in memristor Hopfield neural networks [J].
Cai, Fuxi ;
Kumar, Suhas ;
Van Vaerenbergh, Thomas ;
Sheng, Xia ;
Liu, Rui ;
Li, Can ;
Liu, Zhan ;
Foltin, Martin ;
Yu, Shimeng ;
Xia, Qiangfei ;
Yang, J. Joshua ;
Beausoleil, Raymond ;
Lu, Wei D. ;
Strachan, John Paul .
NATURE ELECTRONICS, 2020, 3 (07) :409-418