A multi-classification classifier based on variational quantum computation

被引:3
作者
Zhou, Jie [1 ]
Li, Dongfen [1 ]
Tan, Yuqiao [1 ]
Yang, Xiaolong [1 ]
Zheng, Yundan [1 ]
Liu, Xiaofang [1 ]
机构
[1] Chengdu Univ Technol, Coll Comp Sci & Cyber Secur, Oxford Brookes Coll, Chengdu 610059, Peoples R China
基金
中国国家自然科学基金;
关键词
Quantum machine learning; Variational quantum algorithms; Quantum classifier; Quantum computing;
D O I
10.1007/s11128-023-04151-6
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The interaction between machine learning and quantum physics has given rise to an emerging frontier of quantum machine learning research. In this line, quantum classifiers have received significant attention recently as a quantum device designed to solve the classification problem in machine learning. In this paper, we propose a new variational quantum multi-class classifier that uses log(2)N qubits to represent N labels, converts the labels into different quantum states, and optimizes the circuit parameters by the fidelity between the true label state and the output state. Our method effectively reduces the width of the circuit and lowers the number of auxiliary particles needed from N to log(2)N. We conducted simulation experiments on several datasets. On the MNIST handwritten digits dataset, we achieved 99.8% accuracy for 4 classifications and 97% for 8 classifications. On the CIFAR-10 dataset, we obtained 85.3% accuracy for 8 classifications. Finally, on the CIFAR-100 dataset, we reached 76% accuracy for 16 classifications.
引用
收藏
页数:21
相关论文
共 54 条
[1]   Quantum variational algorithms are swamped with traps [J].
Anschuetz, Eric R. ;
Kiani, Bobak T. .
NATURE COMMUNICATIONS, 2022, 13 (01)
[2]  
Bang J., 2008, Quantum Learning Machine
[3]   Parameterized quantum circuits as machine learning models [J].
Benedetti, Marcello ;
Lloyd, Erika ;
Sack, Stefan ;
Fiorentini, Mattia .
QUANTUM SCIENCE AND TECHNOLOGY, 2019, 4 (04)
[4]   A generative modeling approach for benchmarking and training shallow quantum circuits [J].
Benedetti, Marcello ;
Garcia-Pintos, Delfina ;
Perdomo, Oscar ;
Leyton-Ortega, Vicente ;
Nam, Yunseong ;
Perdomo-Ortiz, Alejandro .
NPJ QUANTUM INFORMATION, 2019, 5 (1)
[5]  
Bharti K, 2021, Arxiv, DOI arXiv:2101.08448
[6]   Quantum machine learning [J].
Biamonte, Jacob ;
Wittek, Peter ;
Pancotti, Nicola ;
Rebentrost, Patrick ;
Wiebe, Nathan ;
Lloyd, Seth .
NATURE, 2017, 549 (7671) :195-202
[7]  
Bokhan D, 2022, Arxiv, DOI arXiv:2203.15368
[8]   Quantum fingerprinting [J].
Buhrman, H ;
Cleve, R ;
Watrous, J ;
de Wolf, R .
PHYSICAL REVIEW LETTERS, 2001, 87 (16)
[9]   Variational quantum algorithms [J].
Cerezo, M. ;
Arrasmith, Andrew ;
Babbush, Ryan ;
Benjamin, Simon C. ;
Endo, Suguru ;
Fujii, Keisuke ;
McClean, Jarrod R. ;
Mitarai, Kosuke ;
Yuan, Xiao ;
Cincio, Lukasz ;
Coles, Patrick J. .
NATURE REVIEWS PHYSICS, 2021, 3 (09) :625-644
[10]   A hybrid classical-quantum approach for multi-class classification [J].
Chalumuri, Avinash ;
Kune, Raghavendra ;
Manoj, B. S. .
QUANTUM INFORMATION PROCESSING, 2021, 20 (03)