Cohomologies of modified λ-differential Lie triple systems and applications

被引:2
作者
Teng, Wen [1 ]
Long, Fengshan [1 ]
Zhang, Yu [1 ]
机构
[1] Guizhou Univ Finance & Econ, Sch Math & Stat, Guiyang 550025, Peoples R China
来源
AIMS MATHEMATICS | 2023年 / 8卷 / 10期
基金
中国国家自然科学基金;
关键词
Lie triple system; modified lambda-differential operator; cohomology; deformation; extension; ALGEBRAS; OPERATORS;
D O I
10.3934/math.20231280
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we introduce the concept and representation of modified lambda-differential Lie triple systems. Next, we define the cohomology of modified lambda-differential Lie triple systems with coe fficients in a suitable representation. As applications of the proposed cohomology theory, we study 1-parameter formal deformations and abelian extensions of modified lambda-differential Lie triple systems.
引用
收藏
页码:25079 / 25096
页数:18
相关论文
共 45 条
  • [1] Ayala V., 1999, DIFERENTIAL GEOMETRY, V64, P47
  • [2] Ayala Víctor, 2012, Proyecciones (Antofagasta), V31, P81
  • [3] Rota-Baxter 3-Lie algebras
    Bai, Ruipu
    Guo, Li
    Li, Jiaqian
    Wu, Yong
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2013, 54 (06)
  • [4] GAUGE ALGEBRA AND QUANTIZATION
    BATALIN, IA
    VILKOVISKY, GA
    [J]. PHYSICS LETTERS B, 1981, 102 (01) : 27 - 31
  • [5] Cohomologies of Rota-Baxter Lie triple systems and applications
    Chen, Shan
    Lou, Qiong
    Sun, Qinxiu
    [J]. COMMUNICATIONS IN ALGEBRA, 2023, 51 (10) : 4299 - 4315
  • [6] Chou SH, 2021, ANN MATH SCI APPL, V6, P3
  • [7] Coll V., 1989, Ring Theory, V1, P396
  • [8] Das A, 2022, Arxiv, DOI arXiv:2207.02273
  • [9] Cohomology and deformations of weighted Rota-Baxter operators
    Das, Apurba
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2022, 63 (09)
  • [10] Das A, 2021, Arxiv, DOI arXiv:2109.01972