Minimizing energy consumption in UAV assisted NOMA-MEC networks

被引:5
作者
Liu, Shihao [1 ]
Huang, Yangchao [1 ]
Hu, Hang [1 ]
Si, Jiangbo [2 ]
Kang, Qiaoyan [1 ]
Pan, Yu [1 ]
Gu, Cheng [1 ]
机构
[1] Air Force Engn Univ, Informat & Nav Coll, Xian 710077, Peoples R China
[2] Xidian Univ, Sch Telecommun Engn, Xian 710126, Peoples R China
基金
中国国家自然科学基金;
关键词
Mobile edge computing (MEC); Non-orthogonal multiple access (NOMA); Unmanned aerial vehicle (UAV); RESOURCE-ALLOCATION; TRAJECTORY OPTIMIZATION; DELAY MINIMIZATION; POWER-CONTROL; EDGE; SYSTEMS;
D O I
10.1016/j.phycom.2023.102167
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Mobile edge computing (MEC) technology is seen as a solution to the limitation of computing capability of Internet of Things (IoT) devices. In this paper, we investigate an edge computing framework that supports energy savings for UAV in the case of coexistence of edge computing users and latency-sensitive communication users, who use uplink non-orthogonal multiple access (NOMA) technique to communicate with UAV. The users are grouped to satisfy the delay-sensitive requirements of communication users. Then, the system energy consumption is minimized by optimizing the transmission power and computational resource allocation of the computation users while satisfying the quality-of-service (QoS) of the communication users. Since the proposed problem is nonconvex, it is transformed into a convex problem using the successive convex approximation (SCA) algorithm in this paper. At last, we propose a joint global computational resource and communication power optimization algorithm (GCPA) to minimize the system energy consumption. The simulation results show the effectiveness of the proposed scheme. & COPY; 2023 Published by Elsevier B.V.
引用
收藏
页数:9
相关论文
共 47 条
[1]   Mobile Edge Computing: A Survey [J].
Abbas, Nasir ;
Zhang, Yan ;
Taherkordi, Amir ;
Skeie, Tor .
IEEE INTERNET OF THINGS JOURNAL, 2018, 5 (01) :450-465
[2]  
Budhiraja I, 2020, IEEE CONF COMPUT, P877, DOI 10.1109/INFOCOMWKSHPS50562.2020.9162839
[3]   System Delay Minimization for NOMA-Based Cognitive Mobile Edge Computing [J].
Chen, Aiyue ;
Yang, Zhen ;
Lyu, Bin ;
Xu, Bo .
IEEE ACCESS, 2020, 8 :62228-62237
[4]   Joint Task Offloading and Resource Allocation for MEC Networks Considering UAV Trajectory [J].
Chen, Xiyu ;
Liao, Yangzhe ;
Ai, Qingsong ;
Zhang, Ke .
2021 17TH INTERNATIONAL CONFERENCE ON MOBILITY, SENSING AND NETWORKING (MSN 2021), 2021, :296-302
[5]   Joint Trajectory Design, Task Data, and Computing Resource Allocations for NOMA-Based and UAV-Assisted Mobile Edge Computing [J].
Diao, Xianbang ;
Zheng, Jianchao ;
Wu, Yuan ;
Cai, Yueming ;
Anpalagan, Alagan .
IEEE ACCESS, 2019, 7 :117448-117459
[6]   On the Performance of Non-Orthogonal Multiple Access in 5G Systems with Randomly Deployed Users [J].
Ding, Zhiguo ;
Yang, Zheng ;
Fan, Pingzhi ;
Poor, H. Vincent .
IEEE SIGNAL PROCESSING LETTERS, 2014, 21 (12) :1501-1505
[7]   Optimal Resource Allocation for Delay Minimization in NOMA-MEC Networks [J].
Fang, Fang ;
Xu, Yanqing ;
Ding, Zhiguo ;
Shen, Chao ;
Peng, Mugen ;
Karagiannidis, George K. .
IEEE TRANSACTIONS ON COMMUNICATIONS, 2020, 68 (12) :7867-7881
[8]  
Feng WM, 2020, CHINA COMMUN, V17, P54, DOI 10.23919/JCC.2020.11.005
[9]  
Guo F., IEEE INFOCOM 2019 IE, P1
[10]  
Hassan M., 2021 IEEE INT C SMAR, P1