A review of machine learning and deep learning applications in wave energy forecasting and WEC optimization

被引:20
作者
Shadmani, Alireza [1 ,2 ]
Nikoo, Mohammad Reza [3 ]
Gandomi, Amir H. [4 ,5 ]
Wang, Ruo-Qian [6 ]
Golparvar, Behzad [6 ]
机构
[1] Amirkabir Univ Technol, Dept Maritime Engn, Tehran, Iran
[2] Univ Ghent, Dept Electromech Syst & Met Engn, Fac Engn & Architecture, Technol Pk Zwijnaarde 46, Ghent, Belgium
[3] Sultan Qaboos Univ, Coll Engn, Dept Civil & Architectural Engn, Muscat, Oman
[4] Univ Technol Sydney, Fac Engn & Informat Technol, Ultimo, Australia
[5] Obuda Univ, Univ Res & Innovat Ctr EKIK, H-1034 Budapest, Hungary
[6] Rutgers State Univ, Dept Civil & Environm Engn, New Brunswick, NJ USA
关键词
Wave energy conversions; Wave characteristics; Optimization algorithms; Machine learning; Deep learning; ARTIFICIAL NEURAL-NETWORKS; TAKE-OFF SYSTEM; WIND; PREDICTION; GENERATION; CONVERTERS; MODELS; DECOMPOSITION; ALGORITHM; SURVIVAL;
D O I
10.1016/j.esr.2023.101180
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Ocean energy technologies are in their developmental stages, like other renewable energy sources. To be useable in the energy market, most components of wave energy devices require further improvement. Additionally, wave resource characteristics must be evaluated and estimated correctly to assess the wave energy potential in various coastal areas. Multiple algorithms integrated with numerical models have recently been developed and utilized to estimate, predict, and forecast wave characteristics and wave energy resources. Each algorithm is vital in designing wave energy converters (WECs) to harvest more energy. Although several algorithms based on optimization approaches have been developed for efficiently designing WECs, they are unreliable and suffer from high computational costs. To this end, novel algorithms incorporating machine learning and deep learning have been presented to forecast wave energy resources and optimize WEC design. This review aims to classify and discuss the key characteristics of machine learning and deep learning algorithms that apply to wave energy forecast and optimal configuration of WECs. Consequently, in terms of convergence rate, combining optimization methods, machine learning, and deep learning algorithms can improve the WECs configuration and wave characteristic forecasting and optimization. In addition, the high capability of learning algorithms for forecasting wave resource and energy characteristics was emphasized. Moreover, a review of power take-off (PTO) co-efficients and the control of WECs demonstrated the indispensable ability of learning algorithms to optimize PTO parameters and the design of WECs.
引用
收藏
页数:20
相关论文
共 50 条
  • [31] A review on machine learning and deep learning for various antenna design applications
    Khan, Mohammad Monirujjaman
    Hossain, Sazzad
    Mozumdar, Puezia
    Akter, Shamima
    Ashique, Ratil H.
    HELIYON, 2022, 8 (04)
  • [32] Temperature Forecasting in Morocco Using Machine Learning: Optimization for Solar Energy Applications
    Benayad, Mohamed
    Rochd, Abdelilah
    Houran, Nouriddine
    Simou, Mohamed Rabii
    Rhinane, Hassan
    DIGITAL TECHNOLOGIES AND APPLICATIONS, ICDTA 2024, VOL 4, 2024, 1101 : 369 - 383
  • [33] Wind, Solar, and Photovoltaic Renewable Energy Systems with and without Energy Storage Optimization: A Survey of Advanced Machine Learning and Deep Learning Techniques
    Abualigah, Laith
    Zitar, Raed Abu
    Almotairi, Khaled H.
    Hussein, Ahmad MohdAziz
    Abd Elaziz, Mohamed
    Nikoo, Mohammad Reza
    Gandomi, Amir H.
    ENERGIES, 2022, 15 (02)
  • [34] Flood Forecasting Using Machine Learning: A Review
    Ghorpade, Parag
    Gadge, Aditya
    Lende, Akash
    Chordiya, Hitesh
    Gosavi, Gita
    Mishra, Asima
    Hooli, Basavaraj
    Ingle, Yashwant S.
    Shaikh, Nuzhat
    2021 8TH INTERNATIONAL CONFERENCE ON SMART COMPUTING AND COMMUNICATIONS (ICSCC), 2021, : 32 - 36
  • [35] Air Temperature Forecasting Using Machine Learning Techniques: A Review
    Cifuentes, Jenny
    Marulanda, Geovanny
    Bello, Antonio
    Reneses, Javier
    ENERGIES, 2020, 13 (16)
  • [36] Machine Learning Applications in Building Energy Systems: Review and Prospects
    Li, Daoyang
    Qi, Zhenzhen
    Zhou, Yiming
    Elchalakani, Mohamed
    BUILDINGS, 2025, 15 (04)
  • [37] A review of models for water level forecasting based on machine learning
    Wee, Wei Joe
    Zaini, Nur'atiah Binti
    Ahmed, Ali Najah
    El-Shafie, Ahmed
    EARTH SCIENCE INFORMATICS, 2021, 14 (04) : 1707 - 1728
  • [38] A comprehensive review on deep learning approaches in wind forecasting applications
    Wu, Zhou
    Luo, Gan
    Yang, Zhile
    Guo, Yuanjun
    Li, Kang
    Xue, Yusheng
    CAAI TRANSACTIONS ON INTELLIGENCE TECHNOLOGY, 2022, 7 (02) : 129 - 143
  • [39] Forecasting Electricity Demand in Turkey Using Optimization and Machine Learning Algorithms
    Saglam, Mustafa
    Spataru, Catalina
    Karaman, Omer Ali
    ENERGIES, 2023, 16 (11)
  • [40] Machine Learning and Deep Learning Techniques for Residential Load Forecasting: A Comparative Analysis
    Shabbir, Noman
    Kutt, Lauri
    Raja, Hadi A.
    Ahmadiahangar, Roya
    Rosin, Argo
    Husev, Oleksandr
    2021 IEEE 62ND INTERNATIONAL SCIENTIFIC CONFERENCE ON POWER AND ELECTRICAL ENGINEERING OF RIGA TECHNICAL UNIVERSITY (RTUCON), 2021,