Grouped Contrastive Learning of Self-Supervised Sentence Representation

被引:1
|
作者
Wang, Qian [1 ]
Zhang, Weiqi [1 ]
Lei, Tianyi [1 ]
Peng, Dezhong [1 ,2 ,3 ]
机构
[1] Sichuan Univ, Coll Comp Sci & Technol, Chengdu 610065, Peoples R China
[2] Chengdu Ruibei Yingte Informat Technol Co Ltd, Chengdu 610054, Peoples R China
[3] Sichuan Zhiqian Technol Co Ltd, Chengdu 610065, Peoples R China
来源
APPLIED SCIENCES-BASEL | 2023年 / 13卷 / 17期
关键词
contrastive learning; self-attention; data augmentation; grouped representation; unsupervised learning;
D O I
10.3390/app13179873
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
This paper proposes a method called Grouped Contrastive Learning of self-supervised Sentence Representation (GCLSR), which can learn an effective and meaningful representation of sentences. Previous works maximize the similarity between two vectors to be the objective of contrastive learning, suffering from the high-dimensionality of the vectors. In addition, most previous works have adopted discrete data augmentation to obtain positive samples and have directly employed a contrastive framework from computer vision to perform contrastive training, which could hamper contrastive training because text data are discrete and sparse compared with image data. To solve these issues, we design a novel framework of contrastive learning, i.e., GCLSR, which divides the high-dimensional feature vector into several groups and respectively computes the groups' contrastive losses to make use of more local information, eventually obtaining a more fine-grained sentence representation. In addition, in GCLSR, we design a new self-attention mechanism and both a continuous and a partial-word vector augmentation (PWVA). For the discrete and sparse text data, the use of self-attention could help the model focus on the informative words by measuring the importance of every word in a sentence. By using the PWVA, GCLSR can obtain high-quality positive samples used for contrastive learning. Experimental results demonstrate that our proposed GCLSR achieves an encouraging result on the challenging datasets of the semantic textual similarity (STS) task and transfer task.
引用
收藏
页数:17
相关论文
共 50 条
  • [41] Self-Supervised Contrastive Learning In Spiking Neural Networks
    Bahariasl, Yeganeh
    Kheradpisheh, Saeed Reza
    PROCEEDINGS OF THE 13TH IRANIAN/3RD INTERNATIONAL MACHINE VISION AND IMAGE PROCESSING CONFERENCE, MVIP, 2024, : 181 - 185
  • [42] Self-Supervised Learning on Graphs: Contrastive, Generative, or Predictive
    Wu, Lirong
    Lin, Haitao
    Tan, Cheng
    Gao, Zhangyang
    Li, Stan Z.
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2023, 35 (04) : 4216 - 4235
  • [43] Contrastive Self-Supervised Learning: A Survey on Different Architectures
    Khan, Adnan
    AlBarri, Sarah
    Manzoor, Muhammad Arslan
    PROCEEDINGS OF 2ND IEEE INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE (ICAI 2022), 2022, : 1 - 6
  • [44] Contrastive Self-Supervised Learning for Optical Music Recognition
    Penarrubia, Carlos
    Valero-Mas, Jose J.
    Calvo-Zaragoza, Jorge
    DOCUMENT ANALYSIS SYSTEMS, DAS 2024, 2024, 14994 : 312 - 326
  • [45] Contrastive self-supervised learning for neurodegenerative disorder classification
    Gryshchuk, Vadym
    Singh, Devesh
    Teipel, Stefan
    Dyrba, Martin
    ADNI Study Grp
    AIBL Study Grp
    FTLDNI Study Grp
    FRONTIERS IN NEUROINFORMATICS, 2025, 19
  • [46] Interactive Contrastive Learning for Self-Supervised Entity Alignment
    Zeng, Kaisheng
    Dong, Zhenhao
    Hou, Lei
    Cao, Yixin
    Hu, Minghao
    Yu, Jifan
    Lv, Xin
    Cao, Lei
    Wang, Xin
    Liu, Haozhuang
    Huang, Yi
    Feng, Junlan
    Wan, Jing
    Li, Juanzi
    Feng, Ling
    PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, CIKM 2022, 2022, : 2465 - 2475
  • [47] Memory Bank Clustering for Self-supervised Contrastive Learning
    Hao, Yiqing
    An, Gaoyun
    Ruan, Qiuqi
    IMAGE AND GRAPHICS TECHNOLOGIES AND APPLICATIONS, IGTA 2021, 2021, 1480 : 132 - 144
  • [48] Self-supervised contrastive learning for implicit collaborative filtering
    Song, Shipeng
    Liu, Bin
    Teng, Fei
    Li, Tianrui
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2025, 139
  • [49] Dual-channel graph contrastive learning for self-supervised graph-level representation learning
    Luo, Zhenfei
    Dong, Yixiang
    Zheng, Qinghua
    Liu, Huan
    Luo, Minnan
    PATTERN RECOGNITION, 2023, 139
  • [50] Self-Supervised Human Activity Recognition With Localized Time-Frequency Contrastive Representation Learning
    Taghanaki, Setareh Rahimi
    Rainbow, Michael
    Etemad, Ali
    IEEE TRANSACTIONS ON HUMAN-MACHINE SYSTEMS, 2023, 53 (06) : 1027 - 1037