Grouped Contrastive Learning of Self-Supervised Sentence Representation

被引:1
|
作者
Wang, Qian [1 ]
Zhang, Weiqi [1 ]
Lei, Tianyi [1 ]
Peng, Dezhong [1 ,2 ,3 ]
机构
[1] Sichuan Univ, Coll Comp Sci & Technol, Chengdu 610065, Peoples R China
[2] Chengdu Ruibei Yingte Informat Technol Co Ltd, Chengdu 610054, Peoples R China
[3] Sichuan Zhiqian Technol Co Ltd, Chengdu 610065, Peoples R China
来源
APPLIED SCIENCES-BASEL | 2023年 / 13卷 / 17期
关键词
contrastive learning; self-attention; data augmentation; grouped representation; unsupervised learning;
D O I
10.3390/app13179873
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
This paper proposes a method called Grouped Contrastive Learning of self-supervised Sentence Representation (GCLSR), which can learn an effective and meaningful representation of sentences. Previous works maximize the similarity between two vectors to be the objective of contrastive learning, suffering from the high-dimensionality of the vectors. In addition, most previous works have adopted discrete data augmentation to obtain positive samples and have directly employed a contrastive framework from computer vision to perform contrastive training, which could hamper contrastive training because text data are discrete and sparse compared with image data. To solve these issues, we design a novel framework of contrastive learning, i.e., GCLSR, which divides the high-dimensional feature vector into several groups and respectively computes the groups' contrastive losses to make use of more local information, eventually obtaining a more fine-grained sentence representation. In addition, in GCLSR, we design a new self-attention mechanism and both a continuous and a partial-word vector augmentation (PWVA). For the discrete and sparse text data, the use of self-attention could help the model focus on the informative words by measuring the importance of every word in a sentence. By using the PWVA, GCLSR can obtain high-quality positive samples used for contrastive learning. Experimental results demonstrate that our proposed GCLSR achieves an encouraging result on the challenging datasets of the semantic textual similarity (STS) task and transfer task.
引用
收藏
页数:17
相关论文
共 50 条
  • [21] Contrastive and Non-Contrastive Strategies for Federated Self-Supervised Representation Learning and Deep Clustering
    Miao, Runxuan
    Koyuncu, Erdem
    IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, 2024, 18 (06) : 1070 - 1084
  • [22] SELF-SUPERVISED CONTRASTIVE LEARNING FOR CROSS-DOMAIN HYPERSPECTRAL IMAGE REPRESENTATION
    Lee, Hyungtae
    Kwon, Heesung
    2022 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2022, : 3239 - 3243
  • [23] Generative Variational-Contrastive Learning for Self-Supervised Point Cloud Representation
    Wang, Bohua
    Tian, Zhiqiang
    Ye, Aixue
    Wen, Feng
    Du, Shaoyi
    Gao, Yue
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2024, 46 (09) : 6154 - 6166
  • [24] IPCL: ITERATIVE PSEUDO-SUPERVISED CONTRASTIVE LEARNING TO IMPROVE SELF-SUPERVISED FEATURE REPRESENTATION
    Kumar, Sonal
    Phukan, Anirudh
    Sur, Arijit
    2024 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING, ICASSP 2024, 2024, : 6270 - 6274
  • [25] CARLA: Self-supervised contrastive representation learning for time series anomaly detection
    Darban, Zahra Zamanzadeh
    Webb, Geoffrey I.
    Pan, Shirui
    Aggarwal, Charu C.
    Salehi, Mahsa
    PATTERN RECOGNITION, 2025, 157
  • [26] Attentive spatial-temporal contrastive learning for self-supervised video representation
    Yang, Xingming
    Xiong, Sixuan
    Wu, Kewei
    Shan, Dongfeng
    Xie, Zhao
    IMAGE AND VISION COMPUTING, 2023, 137
  • [27] Slimmable Networks for Contrastive Self-supervised Learning
    Zhao, Shuai
    Zhu, Linchao
    Wang, Xiaohan
    Yang, Yi
    INTERNATIONAL JOURNAL OF COMPUTER VISION, 2025, 133 (03) : 1222 - 1237
  • [28] Self-supervised contrastive learning for itinerary recommendation
    Chen, Lei
    Zhu, Guixiang
    EXPERT SYSTEMS WITH APPLICATIONS, 2025, 268
  • [29] Self-supervised contrastive learning on agricultural images
    Guldenring, Ronja
    Nalpantidis, Lazaros
    COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2021, 191
  • [30] Investigating Contrastive Pair Learning's Frontiers in Supervised, Semisupervised, and Self-Supervised Learning
    Sabiri, Bihi
    Khtira, Amal
    EL Asri, Bouchra
    Rhanoui, Maryem
    JOURNAL OF IMAGING, 2024, 10 (08)